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Cloud computing can be described as a distributed computing framework that provides computational
facilities, where information and assets are recovered from cloud service providers via the web, by means
of a well-framed online application. But resource sharing often leads to unavailability of resources, result-
ing in a deadlock situation. One approach to avoid this is by disseminating the workload uniformly
between the encumbered and idle machines. This is called Load Balancing. The aim of doing this is to
reduce the average response time and maximize resource utilization. Forest Optimization Algorithm
(FOA) is based on governance of trees in the forest and survival of distinct trees. These trees have proper
geological developing conditions. The proposed Algorithm is an attempt to find these distinguished solu-
tions from the pool to avoid starvation of the tasks, at the same time improving the average response time
by utilizing the process of seed dispersal in forests.
� 2020 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the Emerging Trends in
Materials Science, Technology and Engineering.
1. Introduction

Cloud computing focuses on managing and providing comput-
ing services online. It uses both parallel and distributed computing
where hardware, software, and information are shared on demand
[1]. Using these services, the customers can access these remote
utilities and pay according to their usages. Virtualization technol-
ogy is the key to such issues. In this model, the virtual machines
(VMs) act as the execution unit that fill in as the establishment
for cloud computing solutions. The computational task should be
assigned to the least utilized virtual machines from the dynamic
array of the VMs, considering the demands of each task. The cli-
ent’s requests are forwarded to the most suitable data center.
These requests are processed by a VM of the data center’s choice.

Load balancing is a prerequisite for improved performance and
efficient utilization of resources. The total processing power serves
as the bottleneck for computing resources available for a VM. But
job arrival is unforeseeable and so are the capacities of each virtual
machine. Thus, load balancing becomes an important factor in
determining the system’s overall performance. The arrival of heavy
and resource intensive tasks can cause some servers to be over uti-
lized while other servers are underutilized. Symmetric distribution
of the load ensures a balanced performance. Efficient scheduling of
jobs and proper resource allocation are used to index the system’s
performance. This ensures lower cost and better average response
time. Thus, it becomes important to develop an algorithm which
symmetrically distributes the workload among the available vir-
tual machines.

To adjust the solicitations of the assets, it is essential to perceive
a couple of significant objectives [2] of load balancing algorithms:

1. Prioritization of tasks: Prioritization of the tasks must be done
through the calculations itself for better support of essential
and highly organized jobs, despite equivalent prioritization for
each of the tasks, as well as, paying little attention to their
origin.

2. Flexibility and expandability of resources: The circulated frame-
work, where the algorithm is being implemented is susceptible
to change over several physical attributes. In this way, the cal-
culations must be acceptable and sufficiently adaptable to deal
with such physical changes effectively.

3. Cost reduction: The essential point is to accomplish a significant
improvement in the execution of the framework to lower the
cost incurred.
orithm,
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In addition to these goals, the following metrics are needed to
be improved for seamless customer service [3,4].

1. Performance metrics: Performance refers to the amount of work
that the system can commit over a period. If all the related con-
straints are optimized, then the performance of the framework
may be improved.

2. Response time: In distributed frameworks, it is described as the
time taken by a load balancing strategy to start processing the
assigned tasks. This time ought to be small for better execution.

3. Throughput of the system: It is the aggregate of several assign-
ments that have finished execution in each time frame [5]. It is
essential to have high throughput for better execution of the
framework.

Some additional properties for better load balancing are,

1. Fault tolerance at the execution time: We can characterize it as
the capacity to perform load balancing by the proper calcula-
tions without loss of connection. Each load balancing algorithm
must have a decent fault tolerance.

2. Scalability of resources: Scalability is the capacity of the frame-
work to perform load balancing with a very limited number of
resources.

3. Utilization of resources: It is the parameter which gives the data
about the degree to which the asset is being utilized. For effec-
tive load balancing in the framework, there should be an ideal
utilization of resources.

4. Task Overheads: It portrays the measure of operating costs
amid the execution of load distribution scheming. It’s an
arrangement of developing tasks, between processes, and pro-
cessors. For load balancing procedure to work efficiently, least
overhead ought to be incurred.

Fig. 1 provides a brief overview of the operation of load balanc-
ing procedure. The clients make several requests from several
machines through the machine interface. These are then put into
a queue of tasks. Task manager then splits them into dependent
and independent task queues and passes them on to the task
scheduler. It forwards the requests to the resource manager for
allocating the required system resources. Resource manager uti-
lizes the load balancer to determine the entities that can optimally
handle the requests. As a security measure, a firewall is put into
use. The load balancer then utilizes several computational
procedures to determine the data center for processing the client’s
Fig. 1. Framework fo
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requests. The geographical conditions, total load on the data center
and individual VMs are important factors for determining the suit-
able system resources for execution of the tasks.

Here, Forest Optimization Algorithm for ideal load distribution
is proposed, a simpler algorithm with a few control parameters.
For a long time, the trees have accustomed themselves in several
ways for their survival [6]. No matter what, they are certain to
wither and perish. Along these lines, the new trees replace the
old ones. Still, a few trees pull through for a longer span of time
[7]. This is a result of the nurturing natural surroundings. In this
way, plants tend to spread their seeds looking for such living
spaces [8]. The Forest Optimization Algorithm (FOA) is an effort
to repeat such seed dispersal attributes shown in the plants.

The seed dispersal is the crucial part of this optimization algo-
rithm. A couple of seeds fall closer to the tree and start to grow.
This is named as local seed dispersal [9,10] or ’’Local seeding’’.
Regardless, a clear majority of the seeds are redirected to a far
off location from the parent tree. In this way, the trees develop
in varied regions of the forest. This technique is named as the ’’Glo-
bal seeding’’.

Our work is based on a comparative analysis of Genetic Algo-
rithm (GA), Particle Swarm Optimization (PSO), Flower Pollination
(FPA) and Jaya optimization algorithm with the Forest Optimiza-
tion Algorithm (FOA) in the cloud environment.

2. Related work

Using Genetic algorithms (GA), we iterate through a set of ran-
dom solutions, based on Darwin’s principles of natural selection,
and optimize some user defined functions. Fortunately, it doesn’t
require the differentiability for optimization unlike many
derivative-based optimization algorithms. So we can handle a
wider range of functions. To begin with, we calculate the fitness
of the initial population. The individuals are chosen from the initial
population based on their fitness score over several iterations, in a
process called ’reproduction’. It ensures that the individuals with
better fitness-score have a better chance of being selected.

Moreover, the individuals are hybridized by using ’genetic oper-
ators’. In this process the solutions are changed locally and com-
bined by using crossover and mutation with a probability of 0.6–
0.8 and 0.01–0.001 respectively [11]. This can provide improved
results over several iterations and is in line with the concept of
’generations’ in evolutionary terms. We can terminate this process
either by specifying the maximum iterations or some flag value for
improvement in the solution’s fitness. As it explores the entire pop-
r load balancing.
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ulation set, it has a better chance of finding the global optimum
values.

Particle swarm optimization (PSO) takes its inspiration from the
social dynamics of living beings. It is based on the theory that the
living beings adapt to their environment, seek food, mates and pro-
tection from predators. If they are randomly scattered, they auto-
matically adapt to their surroundings [12]. We start with a
selected group of candidate population, called the swarm, contain-
ing the potential solutions, called particles. These particles are sub-
jected to a fitness function and their arrangement is governed by
their current position and the position of the best solution in the
entire population.

We can take a group of birds as an example [13]. Assuming the
birds as a swarm, when they are ravenous, they scan for nourish-
ment, and can be treated as tasks. But there is a limited amount
of food available in their territory, which can be related with
resources. Since there are many tasks and a limited amount of
resources, it simulates the condition in cloud computing environ-
ments. The birds don’t have the foggiest idea where the food is
to be found. In such a situation, an algorithm to discover the food
source must be designed. On the off chance that each bird will
attempt to discover for nourishment all alone, it may expend a
lot of time. But by observing the behavior of the birds, it was found
that the best way to deal with this was to pursue the birds closest
to the food source. This behavior of birds is mimicked in our calcu-
lations and the algorithm so structured is named as Particle Swarm
Optimization algorithm (PSO).

Flower pollination is the process of transfer of pollen through
some natural agents like water, wind, insects and animals. So the
pollination process can be classified as biotic and abiotic. The biotic
pollination comprises about ninety percent of the total pollination
and the rest falls under abiotic pollination. The flowers often
attract pollinators by several properties like their color, smell,
etc. These pollinators tend to prefer some flowers over the others
and thus form a flower constancy. This ensures maximized repro-
duction [14].

Furthermore, we can classify the pollination process into self-
pollination and cross-pollination. In self-pollination, the pollen is
transferred from the male part of the flower to the female part of
the same flower. Whereas in cross-pollination, the pollen is trans-
ferred from the male part of one flower to the female part of
another flower. This can happen over a large geographical distance.
Therefore, the biotic and abiotic factors play a significant role in it.
The biotic pollinators like flies and bats are called global pollina-
tors. Since the movement of these creatures is described by Levy
flight, we can safely assume that it is governed by the Levy distri-
bution [14].

To sum up the process, the biotic or the cross-pollination is ter-
med as global pollination. The movement of these pollinators is
governed by the Levy distribution. Abiotic pollination or self-
pollination is treated as local pollination. The flower constancy
property is represented by the reproduction ratio which is directly
proportional to the relative level of comparability between two
flowers. Because the flowers are physically closer to one another,
local pollination is preferred over global pollination. This is con-
strained by the value of a probability ’p’ [14]. Depending on the
value of ’p’ local or global pollination takes place.

Teaching-learning-based optimization (TLBO) is a population-
based optimization algorithm which tries to mimic the traditional
teacher and student relationship [15]. The initial population is con-
sidered as a group of students and the fitness represents the grades
that they’ve scored. The teaching factor TF defines the course of
action to be taken for each iteration. Hence, this parameter must
be tweaked in the subsequent iterations to ensure diversification
of the solutions and often gets trapped in local optima. Jaya algo-
rithm draws its inspiration from TBLO algorithm. But unlike TBLO
3

algorithm, Jaya algorithm is easy to execute as it does not require
tuning of any calculation specific parameters. We start with an ini-
tial population of randomly generated solutions within the con-
fines of the upper and lower bounds of the variable. In the next
step, we calculate the fitness value of each candidate in our popu-
lation set and mark the candidates with the best and worst fitness.
These are then used to modify the other candidates according to
the following eq. [16].

A(i + 1, j, k) = A(i, j, k) + r(i, j, 1)(A(i, j, b) - |A(i, j, k)|) - r(i, j, 2)(A(i,
j, w) - |A(i, j, k)|)where b, w, r (i, j, 1) and r (i, j, 2) are the best, the
worst solutions and two randomly generated probability values
respectively. They diversify the population and ensure proper scal-
ing by pushing the candidates towards the best possible fitness
value. Once the calculation is complete for all of the candidates,
their values are compared to find the best and worst fitness for
the next iteration. Therefore, the candidates move closer to the
best fitness value possible with the subsequent generations.
3. Problem statement

Distributed computing conditions comprise of a few conveyed
hubs interconnected by rapid connections. These hubs oversee
executing attributes of applications having numerous assets and
computational prerequisites. Cloud frameworks must have appro-
priate presets to meet the computational requests of extensive, and
diverse workload.

A cloud framework, comprising of ‘n’ independent nodes [17]
can be represented as,

M = {M1, M2, M3, . . ., Mn}
An array of ‘m’ different tasks can be represented as,
J = {J1, J2, J3, . . ., Jm}
Each task Ji runs on node Mj, and is represented as ‘Jij. ‘Jij ’is the

expected computational time of i’th task on the j’th machine. Sup-
pose, ‘G’ represents the array of tasks allotted to node Mj and the
time taken by the machine Mj to finish the task be Jj. Our intention
is to minimize the average response time of the framework. Sup-
pose Pij represents a pair of nodes, such that, Mj 2M and task Jij 2 T
and:

(a) Pij = 0; means that node j and task i are independent of each
other.

(b) Pij = Jij; Mj processes task i.
(c) If we take L as the total load on ‘m’ nodes then,

Pm
j=1 Pij = Jij,

for all Ji 2 T.
(d)

Pn
i=1 Pij � L, for all Mj 2M.

Keeping these constraints in sight, we specify the utilization of a
node as, U = Ji / makespan [18] and the fitness function as, Fitness,
i = U/ (n ⁄makespan) [19]. This is used as the basis for finding out
the minimum response time of the system. Finally, the comparison
is done amongst the optimization algorithm to determine the best
performer in terms of lower average response time and total exe-
cution time.
4. Proposed algorithm

The Forest Optimization Algorithm (FOA) is organized into the
following steps:

Local seeding.
Population limitation.
Global seeding.
FOA is an evolutionary algorithm [20] which starts with a pre-

liminary set of trees. Every tree can become a possible solution.
A tree has some age and set of other variables associated with it.
At the beginning of the procedure, the age of the tree is set to ‘00.
Thereafter, new trees are generated via local seeding and therefore
the forest is updated with these trees. Their age is set as ‘00 and



Fig. 3. Vector of dimension N + 1.
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their parent’s age is incremented by ‘10. Then we enter the popula-
tion control section. Some trees are skipped to create the candidate
population for the subsequent stage of global seeding. In global
seeding, new candidate population is taken into consideration
and redundant local optimums are eliminated. Later, the trees
are sorted, subjected to their calculated fitness. The one with the
most effective value is chosen and its age is set to ‘00. It ensures
that the tree doesn’t age and perpetually stays within the forest.
The process repeats itself until the termination criteria is met.
We explain the procedure of finding the optimal solution using this
algorithm following the steps described in the flowchart in Fig. 2.
To make things clearer we take an example where we have ‘50 vir-
tual machines and ’100 tasks with 80 ms, 140 ms, 80 ms, 140 ms,
80 ms, 140 ms, 80 ms, 140 ms, 80 ms and 140 ms respectively.
We aim to reach close to the desired result where each VM is being
utilized for 220 ms.

4.1. Initialization of trees

In this algorithm, the potential solutions are called trees. Each
tree denotes the variable’s value. Each of them have an age param-
eter relating to the ’’Age’’ of the corresponding tree. ’’Age’’ of
recently produced trees is made equal to ’00. After local seeding
phase, the ages of more seasoned trees are incremented by ’10. This
incremental change in the age is later utilized for controlling the
elimination of trees, beyond a certain age limit in the pool of solu-
tions. Fig. 3, shows a tree for an N variable, having dimensions N
+ 1, where the estimations of the factors and the ‘‘Age’’ section
demonstrate the changes in the age of the trees.

This is represented as an array of n + 1 variables, comprising of
‘‘Age” of the tree and several other attributes i.e., T = [Age a1, a2, . . .,
an].

The maximum permitted age is predetermined constraint and is
denoted by ’’life time’’. This is predetermined at the beginning of
Fig. 2. Flowchart of FOA.
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the calculation. At the point where the age becomes equal to the
lifetime, it is included in the candidate population and barred from
the pool of the solution. Its value is very crucial. It shouldn’t be too
big or too little. If we pick a huge incentive for this parameter, in
subsequent iterations of the calculation, the age is incremented,
and the pool of solutions is loaded with aged trees that don’t con-
tribute to the local seeding. Then again, if we pick a little incentive
for this parameter, the trees age sooner and from this time
onwards they will be disregarded.

For finding the solution of the problem taken as the example we
set life time and initial population as 6 and 5 respectively. So, the
initial population will have the tasks being assigned to 5 different
VMs such that the load is distributed evenly amongst them. The 5
randomly generated possible solutions are given in Table 1,

4.2. Local seeding of the trees

Initially, a couple of seeds fall substantially nearer to the parent
and change into infant trees. These trees face a steep competition.
The fortunate ones with better nurturing conditions like adequate
sunlight and better soil, transform into the victors in this front for
survival. Local seeding procedure tries to emulate this technique
found in nature. It amputates those trees which have age = 0 and
incorporates a few neighbors of each tree into the pool of potential
solutions. This is explained with an example as shown in Fig. 4.
After this, ages of all the trees, besides those which are produced
afterward, is incremented by 1.

Incrementing the age of the trees impose a check over the num-
ber of the solutions that can be in the pool. So, if we find a promis-
ing solution, the age of that tree is reset to ’00. Then we can
incorporate its neighbors into the pool of solution. Non-
promising trees are routinely rejected later based on their increas-
ing age.

Seeds dropping closer to turn into the acquaintances of the par-
ent are treated as a constraint for this estimation. They are the so-
called ’’Local Seeding Changes’’ (LSC). We have taken its value as 2
in the aforementioned example. Local seeding on a solution with
age = 0 will result in 2 distinct solutions. This constraint is influ-
enced by the extent of the problem statement and as we have a
very limited search space, we have taken a minimal value as the
LSC.

In the first cycle of the calculation, this process is applied to all
the trees with age = 0. Therefore, for ’LCS’ times, the number of
solutions with age = 0 are added to the pool of solutions. In the
subsequent iterations, the number of new trees being added will
decrease because the age of the trees grows by unity and the new-
born trees do not affect local seeding. Local seeding reenacts local
exploration. A five-dimensional vector with LSC = 2 is explored in
the example. c’ and c’’ are two random values in the range [-Dx,
Dx]. Dx is not more than the related variable’s most extreme
bounds. By this way, the search is confined to a particular section.

With a specific end goal to play out this operation, a variable ‘r’
(Fig. 5) is chosen arbitrarily within the range [-Dx, Dx]. This
method recurs LSC times a piece to the solutions having age = 0.
We present an algebraic calculation in the figure below. We choose
the values of both LSC and Dx as 1. Accordingly, a disproportion-
ately produced value, within the array [-1, 1], is summed up with



Table 1
Initial Population.

AGE TASK 1 TASK 2 TASK 3 TASK 4 TASK 5 TASK 6 TASK 7 TASK 8 TASK 9 TASK 10

0 4 2 4 1 0 1 1 4 4 1
0 3 0 4 3 2 0 3 2 0 3
0 3 2 4 0 2 0 3 0 0 2
0 2 0 0 1 1 2 2 2 2 4
0 3 1 1 1 0 1 3 3 2 4

Fig. 4. Local seeding on a tree for a couple of iterations.

Fig. 5. Numerical on local seeding with c’ = 0.32, c’ e [-1, 1].
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one of them. The new solution has age = 0 and pushed on to the
pool of solutions.

Sometimes the value of the variable will be more or less similar
to its upper bounds. To keep these situations at bay, values not as
much as factor’s lower points of confinement and not greater than
maximum cutoff points are nicked from their range. So, at this
stage we get 10 possible solutions from our initial population, each
having age = 0. These are shown in Table 2.

Since, we are adding more solutions to the set of potential solu-
tions, we need to remove the irrelevant solutions from it. This leads
us to the next phase of operation.
4.3. Population limiting

The set of potential solutions must be contained to prevent
exponential growth of the set. So, we specify two parameters that
restrict the size of the set. They are termed as ’’Life Time’’ and ’’Area
Limit’’. We have set their values as 6 and 5 respectively. If the age
of the solutions surpasses the lifetime, they are expelled from the
set to build the candidate population. The solutions are arranged
based on their fitness values. We estimate the ’’area limit’’ param-
eter is the same as the quantity of the initial solution so that the
aggregate number stays unaltered.
5

After population limiting the forest has the following solutions
in Table 3,

And the change in the candidate population is shown in Table 4,
Thereafter, we are clear to proceed to the next phase of opera-

tion using both of these possible solution sets.
4.4. Global seeding of the trees

Several trees have tailored quite well to their surroundings.
They use different forms of agents like animals, birds, wind, and
water to reach varied geographical terrains. This is often termed
as seed dispersal. So, they widen their habitats. Because of this,
trees reach appropriate surroundings and grow in abundance. Glo-
bal seeding simulates this sort of seed distribution scheme of the
trees. Global seeding is performed on a few solutions chosen from
the candidate population. This is defined beforehand as the ‘‘trans-
fer rate.”

First, a couple of them are hand-picked from the candidate pop-
ulation. The values of the variables for each one is assigned hap-
hazardly. This is done to consider the entire search space rather
than a selected region which leads to the addition of some new
solutions to the initial population. The number of variables which
can be changed is given by ‘‘Global Seeding Changes’’ or ‘‘GSC”.



Table 2
Local seeding phase.

AGE TASK 1 TASK 2 TASK 3 TASK 4 TASK 5 TASK 6 TASK 7 TASK 8 TASK 9 TASK 10

1 4 2 4 1 0 1 1 4 4 1
1 3 0 4 3 2 0 3 2 0 3
1 3 2 4 0 2 0 3 0 0 2
1 2 0 0 1 1 2 2 2 2 4
1 3 1 1 1 0 1 3 3 2 4
0 4 2 4 1 0 1 1 4 4 1
0 4 2 4 1 0 1 1 4 4 1
0 3 0 4 3 2 0 3 2 0 3
0 3 0 4 3 2 0 3 2 0 3
0 3 2 4 0 2 0 3 1 0 2
0 3 2 4 0 2 0 3 0 0 2
0 2 0 0 1 1 2 2 2 2 4
0 2 0 0 1 1 2 2 2 2 4
0 3 1 1 1 0 1 3 3 2 4
0 3 1 1 1 0 1 3 3 2 4

Table 3
Population limiting of initial population.

AGE TASK 1 TASK 2 TASK 3 TASK 4 TASK 5 TASK 6 TASK 7 TASK 8 TASK 9 TASK 10 Fitness

0 3 2 4 0 2 0 3 1 0 2 0.001698
0 3 0 4 3 2 0 3 2 0 3 0.00142
0 3 0 4 3 2 0 3 2 0 3 0.00142
1 3 0 4 3 2 0 3 2 0 3 0.00142
0 3 2 4 0 2 0 3 0 0 2 0.0011

Table 4
Candidate population.

AGE TASK 1 TASK 2 TASK 3 TASK 4 TASK 5 TASK 6 TASK 7 TASK 8 TASK 9 TASK 10 Fitness

0 4 2 4 1 0 1 1 4 4 1 0.0011
0 4 2 4 1 0 1 1 4 4 1 0.0011
1 3 2 4 0 2 0 3 0 0 2 0.0011
1 4 2 4 1 0 1 1 4 4 1 0.0011
0 2 0 0 1 1 2 2 2 2 4 0.00102
0 2 0 0 1 1 2 2 2 2 4 0.00102
1 2 0 0 1 1 2 2 2 2 4 0.00102
0 3 1 1 1 0 1 3 3 2 4 8.8E-4
0 3 1 1 1 0 1 3 3 2 4 8.8E-4
1 3 1 1 1 0 1 3 3 2 4 8.8E-4

Fig. 6. Global seeding on one tree.

Table 5
Global seeding phase.

AGE TASK 1 TASK 2 TASK 3 TASK 4 TASK 5 TAS

0 3 1 1 1 0 1

Table 6
Updating the population after global seeding phase.

AGE TASK 1 TASK 2 TASK 3 TASK 4 TASK 5 TAS

0 3 2 4 0 2 0
1 3 0 4 3 2 0
0 3 0 4 3 2 0
0 3 0 4 3 2 0
0 3 2 4 0 2 0
0 3 1 1 1 0 1
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Fig. 6 shows the global seeding in a continuous area. We set its
value as two. Hence, we choose two random variables 3 and 2
and their values are modified to 1.2 and 3.86 inside the range of
the variable.
K 6 TASK 7 TASK 8 TASK 9 TASK 10 Fitness

3 1 4 4 6.71387 E-4

K 6 TASK 7 TASK 8 TASK 9 TASK 10 Fitness

3 1 0 2 0.001698
3 2 0 3 0.001420
3 2 0 3 0.001420
3 2 0 3 0.001420
3 0 0 2 0.0011
3 1 4 4 6.713867E-4



Table 7
Final allocation of tasks.

TASK 1 TASK 2 TASK 3 TASK 4 TASK 5 TASK 6 TASK 7 TASK 8 TASK 9 TASK 10

3 2 4 0 2 0 4 1 1 3
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Table 5 shows the resultant solution after the global seeding
phase Table 6 Table 7.

Let’s assume the range to be within [-5, 5]. So, the values of the
selected two variables can be assigned values 1.7 and 0.4 which
can be rounded off to 2 and 0 respectively.

4.5. Updating the best tree

The solutions are sorted depending upon the fitness values. The
one having the maximum fitness is considered the best. Its age is
set to 0. This prevents its aging during the local seeding. Hence,
the best tree reaches its local optimum by local seeding.

4.6. Termination conditions

Three different termination conditions are possible:

1. Coming to a predefined number of iterations.
2. Insignificant changes in the fitness estimation of the best tree

over a few iterations.
Table 8
Average response time and total execution time for different values of LSC.

LSC 2 3 4

Average Response Time 51.090 51.061 51.025
Total Execution time 1005.15 1005.014 1005.09

Table 9
Average response time and total execution time for different values of GSC.

GSC 1 2 3

Average Response Time 51.097 51.090 51.02
Total Execution time 1005.156 1005.151 1005.145

Table 10
Average response time and total execution time for different values of Transfer Rate.

Transfer Rate 5 1

Average Response Time 51.16
Total Execution time 1005.16 1

Table 11
Comparative analysis of average response time for 1000 tasks.

VM GA PSO

50 11.4 11.141
100 6.28 6.164
1000 1.634 1.573

Table 12
Comparative analysis of total execution time for 1000 tasks.

VM GA PSO

50 1015.049 1014.995
100 1022.243 1022.624
1000 1034.272 1034.574

7

3. Achieving a specific level of accuracy.

We have chosen the first approach i.e. to run the process 5 times
and obtained:

This gives us a distribution of {0 = 280, 1 = 220, 2 = 220, 3 = 220,
4 = 160}. This is a fair result considering that we only had 5 itera-
tions to run and every VM gets exactly two tasks to run. The forest
optimization algorithmwhich is used for finding out the solution is
described below.
5. Forest optimization algorithm

Parameter preset: LSC, GSC, life time, area limit and transfer
rate.

Initialize the initial population with random solutions in the
given range.

While the termination condition is not reached,
Perform Local Seeding on the solutions of age = 0.
For I = 1 to LSC.
5 6 7 8

51.0157 50.944 51.06 51.185
1005.07 1005.05 1005.10 1005.21

4 5 6 7

51.017 51.012 50.988 51.064
1005.137 1005.031 1005.024 1005.358

0 15 20

51.027 51.034 51.04
005.09 1005.107 1005.112

JAYA FPA FOA

11.144 11.225 11.059
6.101 6.058 6.029
1.571 1.573 1.571

JAYA FPA FOA

1014.87 1015.542 1015.363
1022.395 1021.844 1023.313
1035.079 1035.175 1033.921



Table 15
Comparative analysis of average response time for 100,000 tasks.

VM GA PSO JAYA FPA FOA

50 1003.818 1003.808 1003.813 1003.812 1003.787
100 502.553 502.551 502.548 502.549 502.516
1000 51.549 51.413 51.388 51.473 51.403

Table 16
Comparative analysis of total execution time for 100,000 tasks.

VM GA PSO JAYA FPA FOA

50 100275.287 100274.730 100274.742 100274.708 100274.504
100 100291.667 100291.841 100292.489 100290.584 100291.655
1000 100558.563 100559.517 100559.313 100559.970 100559.676

Fig. 7. Average response time (ms) for 1000 tasks and (a) 50VMs (b) 100VMs (c) 1000 VMs.

Table 13
Comparative analysis of average response time for 10,000 tasks.

VM GA PSO JAYA FPA FOA

50 101.797 101.464 101.398 101.381 101.366
100 51.782 51.371 51.323 51.298 51.235
1000 6.368 6.162 6.151 6.155 6.152

Table 14
Comparative analysis of total execution time for 10,000 tasks.

VM GA PSO JAYA FPA FOA

50 10041.172 10041.036 10041.152 10040.720 10041.083
100 10055.393 10055.515 10055.623 10055.550 10055.655
1000 10225.272 10228.183 10228.271 10226.085 10229.729
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A parameter of the potential solution is randomly selected and
summed up with a small amount dx, where dx [-Dx, Dx].

The age of the potential solution is increased by a factor of 1
except for the new solutions that have been generated.

Perform population limiting.
Remove the solutions with age greater than the specified life

time and add them to the pool of candidate solutions.
Sort the solutions based on their fitness values.
Remove the solutions which go beyond the area limit and add

them to the pool of candidate solutions.
Perform Global Seeding.
Solutions from the pool of candidate solutions are selected

based on the transfer rate.
For each selected solution.
GSC number of variables of the solution are selected randomly.
Modify the values of the selected variables with some unevenly

produced value within the given range, and add the new solution,
having age = 0 to the pool of solutions.

Mark the best solution thus far.
Sort the solutions based on their fitness value.
Modify the age of best tree to 0.
Return the best solution.
6. Observations and graphs

Cloudsim is open source software that simulates different
aspects of a cloud framework. The numerical simulation results
were obtained with cloudsim-3.0.3 running on a PC having a core
i7 processor 4770 K clocked at 3.7 GHz, 8 GB of LP-DDR3
Fig. 8. Average response time (ms) for 10,000 tas
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1866 MHz RAM, running a 64-bit Debian Buster operating system
on 512 GB of NVMe SSD. In order to determine the optimal values
for the parameter presets, we have calculated the values of average
response time and total execution time, using 10 VMs and 1000
tasks, for different values of LSC, GSC and transfer rate.

Table 8 shows the average response time and total execution
time for several values of LSC ranging from 2 to 8, keeping GSC con-
stant at 2.

Table 9 shows the average response time and total execution
time for several values of GSC ranging from 1 to 7, keeping LSC con-
stant at 2.

From Table 8 and Table 9, we get the best values of average
response time and total execution time for LSC ‘60 and GSC ‘60.
Using these values, we calculate the best value for transfer rate
under heavy load.

Table 10 shows the average response time and total execution
time for several values of Transfer Rate, keeping both LSC and
GSC constant at 6.

We have set life time as 6, LSC as 6, GSC as 6, area limit 30,
transfer rate 10 and initial population as 30. The VM parameters
are set as 512 MB memory, 10000 MB storage, 1000 Hz bandwidth
and a single core CPU with 1000 mips. Also, a comparative study
has been done between the proposed FOA and four other evolu-
tionary algorithms i.e. GA, PSO, Jaya and FPA each running for
100 iterations except for the Forest optimization algorithm, which
runs for only 10 iterations.

Table 11 represents the average response time of GA, PSO, Jaya,
FPA and FOA using 1000 tasks respectively.

Table 12 represents the total execution time of GA, PSO, Jaya,
FPA and FOA using 1000 tasks respectively.
ks and (a) 50VMs (b) 100VMs (c) 1000 VMs.



Fig. 10. Total execution time (ms) for 1000 tasks and (a) 50VMs (b) 100VMs (c) 1000 VMs.

Fig. 9. Average response time (ms) for 100,000 tasks and (a) 50VMs (b) 100VMs (c) 1000 VMs.
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Fig. 12. Total execution time (ms) for 100,000 tasks and (a) 50VMs (b) 100VMs (c) 1000 VMs.

Fig. 11. Total execution time (ms) for 10,000 tasks and (a) 50VMs (b) 100VMs (c) 1000 VMs.
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Table 13 represents the average response time of GA, PSO, Jaya,
FPA and FOA using 10,000 tasks respectively.

Table 14 represents the total execution time of GA, PSO, Jaya,
FPA and FOA using 10,000 tasks respectively.

Table 15 represents the average response time of GA, PSO, Jaya,
FPA and FOA using 100,000 tasks respectively.

Table 16 represents the total execution time of GA, PSO, Jaya,
FPA and FOA using 100,000 tasks respectively.

From the above tables, it is seen that the proposed FOA per-
forms better than GA, PSO, Jaya and FPA when the tasks to VM ratio
is significantly high.

The graphs are drawn considering average response time as
shown in Figs. 7, 8 and 9.

The graphs are drawn considering total execution times as
shown in Figs. 10, 11 and 12.

7. Conclusion and future work

FOA is enlivened by the function of the forest in a couple of
ways and reproduces the foremost evident technique of survival
being seed dispersal. Those with enough daylight and nurturing
environment will live longer as compared to others. However most
significantly, several seed dispersal techniques help them survive
for an extended span of time and expand their territories. A com-
parison is also done with GA, PSO, Jaya and FPA by conducting
experiments to grasp the performance of each of the algorithms.
The simulation result shows that the proposed FOA algorithmic
program outperforms or matches GA, PSO, JAYA and FPA by mini-
mizing the average response and total execution time under signif-
icant load while running for a fraction of their total number of
iterations. It provides faster response time, while virtually main-
taining the same execution time as that of the others. If the ratio
of total number of tasks to that of total number of VMs is consid-
erably high, we see significant performance improvement using
the FOA. We shave off notable latency in the response time for each
task while sacrificing almost nothing in total execution time. How-
ever, as the ratio decreases, the performance degrades. But the
parameters can be tweaked to provide a balanced performance
under lighter load. So, as a future endeavor, we aim at finding
appropriate values of these system parameters for a steady perfor-
mance under light, moderate and heavy system load.
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