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A B S T R A C T   

Forecasting the energy generation from the solar power is considered challenging due to inaccuracies in fore-
casting, reliability issues and substantial economic losses in power systems. Hence, it is necessary to consider 
wide features from the solar power generation point of view. In this paper, the study uses large features set to 
feed the deep learning classifier for optimal prediction of energy generation from the photovoltaic (PV) plants. 
The features selection and prediction modules automates the process of optimal prediction of energy using Radial 
Belief Neural Network (RBNN). The Restricted Boltzmann Machines (RBM) is used for rule set generation based 
on the feature extracted and the rule set generation is powered by action-reward based Reinforcement Learning 
(RL) method. The experiments are conducted with rich set of input features on large PV plants that ranges be-
tween 1, 50, 100 and 1000. The performance of the proposed model is compared with various metrics that 
includes: Root mean squared error (RMSE), normalized root mean squared error (NRMSE), mean bias error 
(MBE), Mean absolute error (MAE), Maximum absolute error (MaxAE), mean absolute percentage error (MAPE), 
Kolmogorov–Smirnov test integral (KSI) and OVER metrics, Skewness and kurtosis and variability estimation 
metrics. The simulation results show that the RBNN offers improved prediction ability with reduced errors than 
other deep and machine learning classifiers.   

1. Introduction 

Artificial Intelligence (AI) is a computing engine that performs 
complex tasks than a straightforward programming [16]. It offers the 
ability of exploiting itself to offer a power computation. In order to 
produce efficient and effective computations, wide features are often 
necessary to interpolate the knowledge on the field [21]. 

Solar energy solutions are the core components of sustainable energy 
for a clean, green or domestic energy supply. Global solar radiation is 
divided into two parts: one is the diffuse solar radiation originating from 
the dispersion of gas in the earth’s atmosphere, water droplets and 
particles; and the other is direct solar radiation that is not scattered. The 
algebraic sum of the two elements is global solar radiation. Global and 
diffuse radiation values are important for applications in science and 
engineering. 

In addition to optimum site selection for solar power plants, solar 

radiation data are critical for their architecture, scale, service, and 
economic evaluation. The sizing of photovoltaic (PV) systems plays an 
important role. However such data, particularly in remote areas, is not 
always accessible. The only practical means of collecting radiation data 
in daily or hourly time scales is to produce synthetic solar radiation 
values. This is since only a handful of sites or areas are present in each 
country with calculated sequences of radiation values, and even when 
available they are typically available at various times. Several models in 
the study and numeric simulation were developed for the calculation of 
global solar radiation data, insolation and daily cleanliness index on 
different scales. 

The existing methods [1–15,17–26,29,30] at times falls with inac-
curate forecast due to increased parameters and that causes higher 
prediction error. Usually, these models encounter into various other 
problems like missing data, inaccurate forecast on long run, prediction 
of data based on a specific location with inaccurate measurement 
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devices. To resolve these problems, we adopt following metrics that 
includes the collection of various neural network algorithms and rein-
forcement learning (RL) algorithm to accommodate various features to 
produce reduced prediction error. 

The main contribution of the paper involves the following:  

• The author forms an automated prediction model with increased 
number of features that detects the events in an optimal way.  

• The author develops a prediction model using Radial Belief Neural 
Network (RBNN) that consists of a combination of a Restricted 
Boltzmann Machines (RBM) [3,7,24] for the extraction of features 
and Back Propagation Neural Network (BPNN) for the classification 
of features [6,10,27]. The former is an unsupervised model and the 
latter is a supervised model.  

• Further a rulesets are generated using reinforcement learning (RL) 
[7,13,20,28] method based on the feature extracted with 
action-reward model that defines the rules for prediction using the 
BPNN over various datasets collected from various plants to predict 
the performance of large PV plants. 

The remainder of the paper is given below: Section 2 provides the 
related works. Section 3 discusses the proposed method that includes the 
collection of input features, data sample selection, feature extraction 
and data representation. Section 4 evaluates the prediction model and 
Section 5 concludes the entire work with possible directions for future 
scope. 

2. Related works 

Abedinia, O., et al. [1] uses 2-stage feature selection filter to improve 
the forecasting using neural network. The combination of metaheuristic 
optimization enables the learning algorithm used in the study to train 
efficiently the ANNs for forecasting purpose. However, the study fails at 
premature convergence due to the utilisation of metaheuristic solution 
in the search space. 

Barrera, J. M., et al. [4] collected various natural factors in the 
environment using Internet of Thing (IoT) devices to predict the pro-
duction of energy using ANN. The study achieves reduced mean square 
error with improved accuracy for forecasting. However, the study fails 

to provide the critical data for optimal training of the model. This poses 
the unavailability of certain critical features to train effectively the 
ANNs. 

Mousavi, S. M., et al. [23] combined simulated annealing with ANN 
to forecast the daily solar radiation unto a horizontal surface. The 
simulated annealing effectively overcomes the problem of falling into 
local optimal and prevents the formation of premature solution in the 
search space. However, the failure in utilising certain factors like 
clearness index, sunshine duration, extra-terrestrial radiation and 
vapour pressure reduces the training and validation accuracy. 

Rodríguez, F., et al. [26] develops ANN to predict the solar energy 
generation using the photovoltaic generators. The study predicts the 
parameters in order to estimate the future power production that opti-
mises the grid control. However, the study at times fails to utilise certain 
parameters that are non-essential for the study and this may affect the 
performance of prediction of solar energy radiation. 

Sun, W., & Huang, C. [27] predicts the emission of carbon dioxide 
using back propagation neural network. The study takes into concern 
most of the error metrics to check the fitness of the neural network 
model. Failure in considering the factors related to market behaviour 
affects the probable emission of CO2 in the atmosphere and therefore the 
prediction accuracy is reduced. 

3. Proposed method 

Fig. 1 shows the model of the RBNN that consists of RBM with BPNN 
models. The study using RBNN is used for the prediction of events 
related to large PV plants performance. 

3.1. Input features 

In order of designing the RBNN model for predicting the sustainable 
solar energy in PV output, it is essential to analyse the factors associated 
with the generation of energy. Such factors are regarded as inputs to the 
BPNN and these are tailored adequately to predict the output on various 
situation. 

The initial elements influence on forecasting the solar energy is the 
solar components that offers input for processing and converting into 
energy with a photovoltaic cell excitation, generation of solar energy 

Fig. 1. Architecture of Detection using RBNN model.  
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from the renewable source. These components are responsible for the 
generation of energy from the solar panel that includes: direct radiation, 
diffuse radiation and reflected radiation. These three components forms 
the Global Radiation value that does not considers the angle of rays 
reaching the panels. This value is further used to estimate the solar ra-
diation on tilted surface to estimate the radiation output. Various other 
parameters for solar energy generation depends on other factors that 
includes solar azimuth angle, air temperature and wind speed. After the 
solar rays reaching the panel, certain other components further in-
fluences the generation of energy in the electrical components related to 
photovoltaic installation that includes: PV panel performance and PV 
installation size. 

3.2. Data selection 

The data selection is carried out to increase the maximum applica-
bility of RBNN and it allows the model reusability. In this regards, the 

Fig. 2. Architecture of Training-Testing RBNN prediction.  

Table 1 
PV system specifications.  

Modules Value 

System Capacity 264 – 231 kWac 
Azimuth angle 36◦

Tilt angle 11◦

Inverter power 13 × 17 kW + 1 × 10 kW 
Inverters SMA Tripower 
Solar panels type Polycrystalline Solar Panels (Poly-SI)  

Table 2a 
Metrics evaluated for Next one year time period over a solar plant with 100 PV 
arrays using proposed RBNN and other methods.  

Metrics One hour-ahead One-day ahead 

Correlation coefficient 0.77216 0.6604 
RMSE (MW) 17.39392 22.42312 
NRMSE 0.17272 0.22352 
MaxAE (MW) 75.51928 85.4456 
MAE (MW) 11.52144 15.04696 
MAPE 0.11176 0.1524 
MBE (MW) 2.22504 4.33832 
KSIPer (%) 106.0907 220.1977 
OVERPer (%) 28.61056 138.5418 
SD (MW) 40.20312 21.9964 
Skewness 0.08128 − 0.19304 
Kurtosis 2.4384 2.07264 
95th percentile (MW) 40.20312 51.39944 
Capacity (MW) 101.6 101.6  

Table 2b 
Metrics evaluated for Next one year time period over 50 solar plants using 
proposed RBNN.  

Metrics One hour-ahead One-day ahead 

Correlation coefficient 0.95504 0.88392 
RMSE (MW) 288.9098 445.262 
NRMSE 0.08128 0.13208 
MaxAE (MW) 1325.606 2297.115 
MAE (MW) 194.2287 291.2364 
MAPE 0.06096 0.08128 
MBE (MW) 32.14624 133.9291 
KSIPer (%) 53.68544 187.2488 
OVERPer (%) 0.78232 95.94088 
SD (MW) 287.1419 424.688 
Skewness − 0.2032 0.2032 
Kurtosis 2.56032 3.85064 
95th percentile (MW) 647.6492 1006.511 
Capacity (MW) 3518.408 3518.408  

Table 2c 
Metrics evaluated for Next one year time period over 100 solar plants using 
proposed RBNN.  

Metrics One hour-ahead One-day ahead 

Correlation coefficient 0.97536 0.92456 
RMSE (MW) 384.7084 634.177 
NRMSE 0.06096 0.1016 
MaxAE (MW) 1763.004 3434.364 
MAE (MW) 260.797 419.7198 
MAPE 0.04064 0.07112 
MBE (MW) 44.01312 175.3006 
KSIPer (%) 49.05248 145.6741 
OVERPer (%) 0.37592 55.5244 
SD (MW) 382.2192 609.539 
Skewness − 0.21336 0.18288 
Kurtosis 2.50952 3.4036 
95th percentile (MW) 851.6823 1417.168 
Capacity (MW) 6185.408 6185.408  
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study defines requirement set for the selection of components in a way 
that data is collected optimally. The model is trained and tested under 
various conditions and specifically for the purpose of training, various 
information are collected that includes: energy generated, solar factors, 
other atmospheric and geological factors and finally, the electrical 

factors post installation. After acquiring all the factors the study offers 
various outputs like installation size (kW), total energy generated per 
day basis (kWh/day) and ratio of energy conversion (%). 

3.3. Feature extraction 

The tokens present in the texts of the input PV plant dataset is con-
verted to a components. It allows the representation of various embed-
ding dimensions to extract the event trigger. Consider a set (v,h) from the 
pre-processed data item, where E(v,h|θ) is defined as an energy function 
that is utilised for training the feature selector in unsupervised manner 
and in addition the RBM uses the probability distribution function (PDF) 
to define the solutions. 

Here, the energy function is defined as follows: 

E(v, h|θ ) = −
∑n

i=1
aivi −

∑m

j=1
bihi −

∑n

i=1

∑n

j=1
viwijhj (1)  

where 
θ is represented as the RBM parameter θ = {Wij, ai, bj} 
w is represented as the weights of each layer, and 
a is represented as the visible hidden layer bias and 

Table 3 
Comparison with other existing methods.  

Metrics 
1 solar plant 50 solar plants 100 solar plants 1000 solar plants 

One hour-ahead One-day ahead One hour-ahead One-day ahead One hour-ahead One-day ahead One hour-ahead One-day ahead 

(a) DBN 
Correlation coefficient 0.784515 0.670966 0.970321 0.898063 0.990966 0.939353 1.027095 1.021933 
RMSE (MW) 17.67222 22.78189 293.5323 452.3862 390.8637 644.3239 1536.286 2798.766 
NRMSE 0.175484 0.227096 0.08258 0.134193 0.061935 0.103226 0.020645 0.04129 
MaxAE (MW) 76.72759 86.81273 1346.815 2333.869 1791.212 3489.314 16647.52 18557.41 
MAE (MW) 11.70578 15.28771 197.3364 295.8962 264.9698 426.4353 1098.857 2037.57 
MAPE 0.113548 0.154838 0.061935 0.08258 0.04129 0.072258 0.020645 0.030968 
MBE (MW) 2.260641 4.407733 32.66058 136.072 44.71733 178.1055 136.392 1545.587 
KSIPer (%) 107.7882 223.7208 54.54441 190.2448 49.83732 148.0049 49.30055 137.2075 
OVERPer (%) 29.06833 140.7584 0.794837 97.47593 0.381935 56.41279 0.066463 42.76637 
SD (MW) 40.84637 22.34834 291.7362 431.483 388.3347 619.2917 1530.258 2332.991 
Skewness 0.08258 − 0.19613 − 0.20645 0.206451 − 0.21677 0.185806 − 0.23742 0.639999 
Kurtosis 2.477414 2.105802 2.601285 3.91225 2.549672 3.458058 4.975474 3.881283 
95th percentile (MW) 40.84637 52.22183 658.0116 1022.615 865.3092 1439.842 3178.647 5834.93 
Capacity (MW) 98.4252 98.405 3408.465 3408.465 5992.126 5992.126 63479.33 63479.33  

(b) BPNN         
Correlation coefficient 0.802558 0.686399 0.992638 0.918718 1.013758 0.960958 1.050718 1.045438 
RMSE (MW) 18.07868 23.30587 300.2836 462.7911 399.8536 659.1433 1571.621 2863.138 
NRMSE 0.17952 0.23232 0.08448 0.13728 0.06336 0.1056 0.02112 0.04224 
MaxAE (MW) 78.49232 88.80942 1377.792 2387.548 1832.41 3569.569 17030.42 18984.23 
MAE (MW) 11.97502 15.63933 201.8751 302.7018 271.0641 436.2433 1124.131 2084.434 
MAPE 0.11616 0.1584 0.06336 0.08448 0.04224 0.07392 0.02112 0.03168 
MBE (MW) 2.312635 4.509111 33.41177 139.2016 45.74583 182.2019 139.529 1581.135 
KSIPer (%) 110.2673 228.8664 55.79893 194.6204 50.98358 151.409 50.43446 140.3632 
OVERPer (%) 29.7369 143.9959 0.813118 99.71788 0.390719 57.71028 0.067991 43.74999 
SD (MW) 41.78584 22.86235 298.4461 441.4071 397.2664 633.5354 1565.454 2386.65 
Skewness 0.08448 − 0.20064 − 0.2112 0.2112 − 0.22176 0.19008 − 0.24288 0.654719 
Kurtosis 2.534395 2.154236 2.661115 4.002232 2.608315 3.537593 5.08991 3.970552 
95th percentile (MW) 41.78584 53.42293 673.1459 1046.135 885.2113 1472.959 3251.755 5969.134 
Capacity (MW) 84.84931 84.84931 2938.332 2938.332 5165.626 5165.626 54723.56 54723.56  

(c) ANN 
Correlation coefficient 0.830086 0.709942 1.026685 0.95023 1.04853 0.993919 1.086758 1.081296 
RMSE (MW) 18.69878 24.10526 310.5833 478.6648 413.5686 681.7519 1625.527 2961.343 
NRMSE 0.185677 0.240288 0.087377 0.141988 0.065533 0.109222 0.021844 0.043689 
MaxAE (MW) 81.18461 91.85559 1425.05 2469.441 1895.261 3692.005 17614.56 19635.39 
MAE (MW) 12.38576 16.17576 208.7994 313.0845 280.3616 451.2064 1162.689 2155.93 
MAPE 0.120,144 0.163,833 0.065533 0.087377 0.043689 0.076455 0.021844 0.032,767 
MBE (MW) 2.391959 4.663773 34.5578 143.9763 47.31491 188.4514 144.3148 1635.368 
KSIPer (%) 114.0495 236.7165 57.71283 201.2959 52.73231 156.6023 52.16436 145.1777 
OVERPer (%) 30.75688 148.9349 0.841008 103.1382 0.404121 59.68975 0.070323 45.25062 
SD (MW) 43.21909 23.64653 308.6828 456.5474 410.8926 655.2656 1619.149 2468.512 
Skewness 0.087377 − 0.20752 − 0.21844 0.218444 − 0.22937 0.196599 − 0.25121 0.677176 
Kurtosis 2.621325 2.228126 2.752391 4.139509 2.69778 3.658932 5.264494 4.106742 
95th percentile (MW) 43.21909 55.25534 696.2348 1082.017 915.5741 1523.481 3363.291 6173.875 
Capacity (MW) 78.80581 78.80581 2729.045 2729.045 4797.698 4797.698 50825.81 50825.81  

Table 2d 
Metrics evaluated for next one year time period over 1000 solar plants using 
proposed RBNN.  

Metrics One hour-ahead One-day ahead 

Correlation coefficient 1.01092 1.00584 
RMSE (MW) 1512.092 2754.691 
NRMSE 0.02032 0.04064 
MaxAE (MW) 16385.36 18265.17 
MAE (MW) 1081.552 2005.482 
MAPE 0.02032 0.03048 
MBE (MW) 134.2441 1521.247 
KSIPer (%) 48.52416 135.0467 
OVERPer (%) 0.065416 42.09288 
SD (MW) 1506.159 2296.251 
Skewness − 0.23368 0.62992 
Kurtosis 4.89712 3.82016 
95th percentile (MW) 3128.589 5743.042 
Capacity (MW) 65526.92 65526.92  
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b is represented as the hidden layer bias. 
The joint PDF between the output and hidden layer (h), which is 

solely expressed as below: 

P(v, h|θ ) =
e− E(v,h|θ )

Z(θ)
(2)  

Z(θ) =
∑

v,h
e− E(v,h|θ ) (3) 

The conditional PDF between the hidden layers is expressed in the 
form of Gibbs sampling function: 

P
(
hj = 1|v, θ

)
= sigmoid

(

bj +
∑

i
viwij

)

(4)  

P
(
vj = 1|v, θ

)
= sigmoid

(

aj +
∑

i
hiwji

)

(5) 

Using Eq. (3), the joint PDF of hidden layer is derived in an active 
state. Now the RBM feature extractor points out the symmetric feature in 
the activation state of a and h, where the probability of activation state is 
determined by Eq. (4). 

3.4. Prediction 

The unsupervised feature learning process obtains the corresponding 
RBM weight w and it train iteratively the RBM to acquire the entire 
weights W = w1, w2… wl. Finally, the connection weights are fine tined 
with supervised BP learning from unsupervised RBM learning. The su-
pervised learning enables the determination of gradient through the 
training data label and accordingly adjusts the parameters in the 
network. Finally, a minimal prediction error or prediction error is ob-
tained using the RBNN. 

RBNN is uses RBM for feature extraction and BPNN for classification 
of the energy generation from the PV array modules. The Fig. 2 shows 
the structure of training-testing RBNN network, which has stacked 
Restrict Boltzmann Machines (RBM) and a BPNN classifier for PV energy 
generation prediction in its deep network. 

To achieve this, the study uses two different models, where RBM acts 
in an unsupervised way to learn the features related to PV plants and 
BPNN acts in a supervised way to classify the features for the prediction 
of its performance. The study uses RL algorithm to provide feedback of 
the results obtained at each iterations, where these feedback would 
enable the model to predict accurately by restricting the errors while 
prediction of the performance of PV plants. The RL algorithm provides 
action (either award or penalty) based on the features extracted by the 
RBM feature extractor. Depending on the features selected, the RL de-
fines certain rules in association with a similarity comparison module, 
which checks the classification accuracy of BPNN based on these rules. 

3.5. Rule set 

The RL defines the set of rules based on the features extracted by the 
RBM and it helps in classification of features using BPNN, when the rules 
are been fed into the similarity comparison unit of the prediction unit. 
The rules are specified as the IF-THEN rules that enables network being 
described with decentralized information. The prediction rule over each 
class label is extracted using the following manner, 

Ri : IF
(
xs1 > V1 or xs1 < V ’

1

)

∧
(
xs2 > V2 or xs2 < V ’

2

)
∧ ...

∧
(
xsn > Vn or xsn < V ’

n

)
then y = c

(6)  

where 
Rj is defined as the rules allocated for each feature label, 
(xs1, xs2,…,xsn) is defined as the rule elements of each feature label, 

V is defined as the real values learnt by the BPNN, 
y is defined as label for a specific class c. 
For classification of the extracted features, the study develops rules 

for prediction of instances. The rules defines the relationship between 
the class labels and the prediction events, which spontaneously reduces 
the classification error. The classification rule defined by the RL algo-
rithm is generally evaluated by the fitness function: 

Fitness =

(
TP

(TP+FN)

)

(
TN

(FP+TN)

) (7)  

Where, 
TP - True Positive; 
TN - True Negative; 
FP - False Positive; 
FN - False Negative; 
Thus for each PV prediction rule, the study uses following metrics to 

evaluate its effectiveness: 

Sensitivity =
TP

TP + FN  

Specificity =
TN

FP + TN
.

4. Results and discussions 

In this section, the prediction of energy generation performance 
using the RBNN classifier is estimated in terms of various other classi-
fiers. The RBNN combined with RL is evaluated with various other al-
gorithms that includes: Artificial Neural Network (ANN), BPNN and 
Deep Belief Network (DBN). The proposed RBNN integrates the RBM 
with BPNN, it is hence essential to test the performance of BPNN 
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algorithm over the dataset used. The novel solution using RBNN urges 
the model to compare itself with DBN and ANN, since these model acts 
as an ancestor to the proposed novel solution. Comparison with all these 
three neural network model would enable the study to define the effi-
cacy of the RBNN. Also, the difference between the existing and the 
proposed solution is that the RBNN integrates BPNN and RL for different 
tasks, however the conventional model fails to do so. 

In general, the study is tested with all the error metrics to check if the 
study reports increased accuracy and also the study aims to report how 
well the model abide with a given dataset. The proposed method is 
tested against various performance measures that includes Root mean 
squared error (RMSE), normalized root mean squared error (NRMSE), 
mean bias error (MBE), Mean absolute error (MAE), Maximum absolute 
error (MaxAE), mean absolute percentage error (MAPE), Kolmogor-
ov–Smirnov test integral (KSI) and OVER metrics, Skewness and kurtosis 
and variability estimation metrics that includes: forecast errors and 
varying geographic locations. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Y(i) − Y

⌢

(i)
)2

N

√
√
√
√
√

(8)  

Where 
Y(i) is the actual generated PV output and 

Y
⌢

(i) is the predicted PV output. 
N is the total estimated points in forecasting time period. 

nRMSE =
1

max(Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Y(i) − Y

⌢

(i)
)2

N

√
√
√
√
√

(9)  

MaxAE = max
⃒
⃒
⃒Y(i) − Y

⌢

(i)
⃒
⃒
⃒ (10)  

MAE =
1
N

∑N

i=1

⃒
⃒
⃒Y(i) − Y

⌢

(i)
⃒
⃒
⃒ (11)  

MAPE =
1
N
∑N

i=1

⃒
⃒
⃒
⃒
⃒

Y(i) − Y
⌢

(i)
Capacity

⃒
⃒
⃒
⃒
⃒

(12)  

where Capacity – capacity of each PV array for power generation 

MBE =
1
N
∑N

i=1

(
Y
⌢

(i) − Y(i)
)

(13)  

D = max
⃒
⃒
⃒F(i) − F̂(i)

⃒
⃒
⃒ (14)  

where, 
F(i) is the CDF of the actual generated PV output and 
F̂(i) is the CDF of the predicted PV output. 

KSI(%) =

∫pmax

pmin

Dndp

ac
× 100 (15)  

OVER(%) =

∫pmax

pmin

tdp

ac
× 100 (16)  

Skewness : γ = E

[(
e − μe

σe

)3
]

(17)  

Where, 

γ is defined as the skewness; 
e is defined as the forecast error 
μe is defined as the mean of forecast error 
σe is defined as the standard deviation of the forecast error 

Kurtosis : κ =

(
μ4

σ4
e

)

− 3 (18)  

Where, 
μ4 is defined as the mean of fourth moment 
σe is defined as the standard deviation of the forecast error 

Variability Estimation f (x; h) =
1
n
∑n

i=1
Kh(x − x(i) ) (19) 

The data is obtained from [26] and the investigations are carried out 
at one hour-ahead and Day-ahead solar forecast errors. The specifica-
tions used for the study is given in Table 1. 

Tables 2a–2d shows the metrics evaluated for next one year time 
period over a solar plant, 50 solar plants, 100 solar plants and 1000 solar 
plants during validation. The results over various metrics shows that the 
prediction error is less in one hour ahead and one-day ahead validation. 
The results further shows that the proposed method has reduced pre-
diction errors with maximal prediction accuracy than other methods (as 
in Table 3). 

5. Conclusions 

In this paper, RBNN studies large set of features from the input data 
during the process of feature extraction and classification. The RL 
further enhances the generation of rules for predicting the optimal 
energy output from the PV plant based on various input features or 
components. The study provides an improved response rate than other 
methods using its RBM and BPNN. The BPNN performance boosted by 
the RL rule set generation improves the rate of prediction. The results 
of simulation shows that the rate of prediction is improved in BPNN 
than other classifiers with its event modelling and shows reduced 
prediction error than other methods. The results of multiple metrics 
thus successfully evaluates the solar forecast quality based on its input 
to the RL. However, under-forecast is detected at some point of 
observation, especially in one hour ahead forecasting. The sensitivity of 
the RBNN shows improved forecast or sensitivity over other methods in 
terms of its uniformity, skewness and kurtosis metrics. In future, the 
combination of wind farms may be considered for evolution over 
various metrics. 
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