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Abstract
The manuscript presents a bragging-based ensemble forecasting model for predict-
ing the number of incidences of a disease based on past occurrences. The objec-
tives of this research work are to enhance accuracy, reduce overfitting, and handle 
overdrift; the proposed model has shown promising results in terms of error metrics. 
The collated dataset of the diseases is collected from the official government site 
of Hong Kong from the year 2010 to 2019. The preprocessing is done using log 
transformation and z score transformation. The proposed ensemble model is applied, 
and its applicability to a specific disease dataset is presented. The proposed ensem-
ble model is compared against the ensemble models, namely dynamic ensemble for 
time series, arbitrated dynamic ensemble, and random forest using different error 
metrics. The proposed model shows the reduced value of MAE (mean average error) 
by 27.18%, 3.07%, 11.58%, 13.46% for tuberculosis, dengue, food poisoning, and 
chickenpox, respectively. The comparison drawn between the proposed model and 
the existing models shows that the proposed ensemble model gives better accuracy 
in the case of all the four-disease datasets.

Keywords Bootstrapping · Bragging · Disease forecasting · Ensemble · Time series 
forecasting

Introduction

The rising prevalence of data acquisition applications leads to the collection of a 
vast amount of time-series data that enable forecasting for many medical applica-
tions. A multitude of end-use cases for time-series applications in the medical 
domain exists that aims to process thousands of time-series and millions of data 
points on an immense scale. Across the world, human populations are afflicted by 

 * Nonita Sharma 
 nonita@nitj.ac.in

Extended author information available on the last page of the article

http://orcid.org/0000-0002-3132-3748
http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-020-00119-7&domain=pdf


 New Generation Computing

123

numerous ill-health conditions. Several of these diseases are highly contagious 
and, therefore, reliable and sustainable predictions in the clinical setting need to be 
focused upon. These predictions are based on the available data regarding its spread 
across the physical and geographical spectrum. The presented research work focuses 
on such ill-health manifestations worldwide and determines ways of predicting their 
cyclical occurrences with a high degree of reliability. A bragging based heterogene-
ous ensemble model for predicting the future incidences of the diseases is proposed. 
The diseases selected in this research work are dengue, tuberculosis, chickenpox, 
and food poisoning. The number of incidences of these diseases is significant in the 
field of epidemiology. Also, these diseases show different trend patterns enabling 
them to evaluate the proposed ensemble model more extensively.

Dengue is the most prevalent mosquito-borne infection that has increased 30-fold 
in the past 5 decades and is declared an endemic in over 100 countries having 
around 3.9 billion people are at the risk of dengue infection [1]. Around 2.7 mil-
lion cases and 1206 deaths in the year 2019 in America have been reported by the 
PAHO (Pan American Health Organization) [2], and out of the total risks spreading 
in 129 countries, 70% of the infections are in Asia [3]. Further, TB (tuberculosis), 
a highly infectious disease caused by the bacillus mycobacteria, is a major cause 
of sickness and is one of the ten reasons for death worldwide [4]. The number of 
TB cases varies from under 5 to above 500 new incidences per 100,000 popula-
tion, with the average being 130 worldwide [5]. As reported by WHO (World Health 
Organization), 22 countries are in the list of 30 profoundly affected countries, with a 
high mortality rate, an estimated 3.7 million deaths reported in the year 2018. Cor-
respondingly, the disease affects both genders, with males accounting for 57% cases, 
females 32%, and children being 11% of the total affected population [6]. Further, 
chickenpox outbreaks keep on happening even in those settings where most kids are 
inoculated, for example, schools [7]. The medical data collected at CDC (Centers for 
Disease Control and Prevention) claim a substantial decline regarding chickenpox 
outpatient visits and hospitalization by 84% and 93%, respectively, as compared to 
the pre-vaccination period. The mortality rate due to the disease also reduced to 87% 
compared to the pre-vaccine year [8]. Likewise, FP (food poisoning), a prevalent 
worldwide disease, occurs because of the consumption of infected or polluted food 
[9]. WHO estimates that 600 million people, i.e., 1 out of 10 people fall ill due to 
food poisoning, and 4,20,000 expire yearly. Out of these, 40% of the disease burden 
is carried by the children below 5 years of age [10]. Despite the continuous efforts 
put by leading public health organizations, the spread of viral diseases remains high 
across the globe. If not restricted before-hand, it can lead to the deployment of extra 
resources (human, infrastructure, and financial resources) and may bring the whole 
society at a standstill [11]. Failure to handle pandemic diseases in an effective man-
ner may result in high morbidity and mortality [12]. Therefore, a robust health sys-
tem mechanism and preparedness for the detection, confirmation, and control of 
such diseases are of utmost importance. The manuscript presents a novel model to 
predict the number of incidences of the diseases and evaluates its efficacy by com-
paring it with the state-of-the-art models. The proposed research work’s novelty lies 
in an ensemble model that takes seasonal dependency into account and model trend 
and seasonality separately.
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Objective

The main objective of the research work presented here is to propose a heterogene-
ous ensemble model to handle the three main drawbacks of ensembling, i.e., concept 
drift, overfitting, and noise. The proposed model is designed to handle the seasonal-
ity and trend separately. For trend modeling, an ensemble of ARIMA (Auto-Regres-
sive Integrated Moving Average), SNaive, Spline, and NNAR (Neural Network Auto 
Regression) is applied. Modeling of Seasonality is done using CART (Classification 
and Regression Trees). Bootstrapping of CART is done to avoid overfitting, and the 
median of all the forecasts is taken as the final forecast. Median is less prone to out-
liers and is not senstive to large fluctuations as compared to the mean because signif-
icant variations do not impact the median much [13].  Hence, the proposed ensemble 
overcomes the drawbacks of ensembling and helps in achieving higher prediction 
accuracy.

Significance

Time series forecasting involves the application of statistical models to predict 
future incidences based on past data. These models, when applied independently, 
can fit the data and generate accurate forecasts. However, these models suffer from a 
drawback of poorly adapting to unexpected conditions, resulting from some environ-
mental factors or particular sudden virus spread situations [14]. In scientific litera-
ture, this condition is known as “concept drift”. Modeling of concept drift implies 
finding the unknown or hidden relationship between input and output variables. 
Also, in disease forecasting, time-series data are not always stationary [15], and thus 
the distribution of data, i.e., the concept changes unexpectedly with time. Therefore, 
it becomes imperative to consider the concept of concept drift while forecasting. 
Further, ensemble forecasting techniques are universally applied as de facto standard 
nowadays for predictive accuracy improvement. This involves combining multiple 
predictions from base models to enhance the accuracy of base models and avoid 
overfitting. The significance of the presented research work is to propose a brag-
ging based ensemble model for disease forecasting and to check its efficacy on the 
disease datasets.

Background

A brief review of the various methodologies in disease forecasting and modeling 
techniques can generate new insights into the field of disease modeling. Preliminary 
work in this field focused mostly on the application of time series forecasting mod-
els for disease forecasting. A seminal work done by the International Society for 
Disease Surveillance proposed a framework for disease outbreak detection and vali-
dated the framework by comparing it with several variants and evaluated forecast 
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residuals to alert the concerned authorities [16]. An ensemble learning paradigm for 
FCM (fuzzy cognitive map) is proposed for the classification of Autism, and the 
results are significantly better in terms of accuracy [17].

Besides, Smith et  al. proposed a multi-model ensemble framework for predict-
ing transmission and elimination dynamics of lymphatic filariasis. This multi-
model ensemble framework overcomes the biases of a single model [18]. Yin and 
Jha employed machine learning ensemble models based on wearable medical sen-
sors and discovered that the third prominent cause of death in a developed coun-
try like the US is preventable medical negligence [19]. This negligent behavior is 
avoided by a CDSSs (computer-based clinical decision support systems). Further-
more, the potential and efficiency of ensemble models are also witnessed in [20]. 
The researchers here worked on the spread of the Ebola virus from 2014 to 2015 and 
established that the ensemble model significantly improves prediction accuracy over 
any individual modeling approach.

Shaman and Karspeck proposed the first step towards developing a statistical sys-
tem for influenza forecasting and developed a framework for forecasting seasonal 
outbreaks of influenza using data assimilation technique and can predict seven days 
ahead [21]. Zarebski et al. used PF (particle filters) in association with mechanis-
tic transmission models to forecast seasonal influenza progression and predicted the 
count of laboratory-confirmed occurrences of influenza in Melbourne in 2010–2015 
epidemics [22].

Further, Cobb et al. made a comparison of two Bayesian data assimilation tech-
niques for tracking the COVID-19 epidemic [23]. The simulations were performed 
for tracking the spatio-temporal patterns of emerging epidemics. The parameter esti-
mation of TB, a prime cause of mortality across the globe, is undertaken by authors 
in [24]. Here, the authors employed the EnKF (ensemble Kalman filter) approach to 
estimate the smear-positive cases in India for the period 2006–2011. Kalman filter 
has also been employed to predict various infectious diseases like HIV/AIDS, mea-
sles, and influenza [25].

Additionally, ensemble modeling has proven to outperform existing base mod-
els in other domains as well. Sainan et al. [26] conducted a study on the bagging 
method and found that the bagging method outperforms the historical mean method 
when the in-sample estimation period is small. When the number of observations for 
in-sample is 24, 60, and 120, the percentage gains of the bagging method over the 
historical mean in terms of out-of-sample are around 0.45–4.6% and − 2.8 to 0.7% 
positive and negative, respectively. Fang et al. [27] compared the RF (random for-
est) model with autoregressive integrated moving average ARIMA models using 
morbidity and meteorological data from 2012 to 2016 to train the models and data 
from 2017 for testing purposes. RF model extensively combined the simultaneous 
and lagged outcomes of meteorological elements; it additionally incorporated the 
autocorrelation and irregularity of the morbidity. Further, Rathore et  al. proposed 
an ensemble model to predict faults in software modules [28, 29]. Here, authors 
employ a combination of approaches based on linear and non-linear combination 
rule for the ensemble. The results prove the efficacy of ensembling in this field as 
well. Similarly, Rathore et al. presented a dynamic approach to select the base learn-
ers for software fault prediction [30]. In this seminal work, initially, the neighbor 
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module the same as the testing module is located based on a distance function, and 
then the best learner is selected. The method demonstrated a remarkable predictive 
accuracy enhancement.

As observed that ensemble modeling approaches have been applied to forecast 
infectious diseases. It can be safely concluded that most of the studies have focused 
on enhancing the prediction accuracy using ensembling techniques. Nevertheless, 
the concept of "concept drift" remains uncharted in the research domain. In epide-
miology, the data collected at different time points are not always stationary; in other 
words, seasonality changes unexpectedly with time. Therefore, it becomes impera-
tive to incorporate seasonal dependency into account.

Proposed Bragging‑Based Heterogeneous Ensemble Model 
for Disease Forecasting

This section presents the heterogeneous bragging-based ensemble model for disease 
forecasting. Data pertaining to diseases are known to have strong seasonal depend-
encies; hence, the proposed model integrates the dependencies exhibited in the data. 
Depending on seasonal dependencies, forecasts will be computed monthly, quar-
terly, or yearly. The working methodology is demonstrated in Fig. 1; The dataset is 
decomposed into seasonality, trend, and a residual component. The trend component 
is modeled using an ensemble of base models, namely ARIMA, SNaive, Spline, and 
NNAR. The final forecast of this ensemble is the average of the forecast of the base 
models. A bootstrap sample with replacement is created for the seasonality compo-
nent, and CART is applied as a bragged ensemble model. The output of the model 
is taken as the median of all bootstrapped forecasts. Median is less prone to outliers, 
therefore, selected to combine the forecasts. The final forecast is the aggregated of 
the forecast of the seasonality component and trend component.

The algorithm for the proposed methodology is as follows:

1. The prediction of no. of cases ( yn ) this year on the basis of past measurements 
( yn−1 , yn−2,…,y0 ) can be represented using linear coefficient ( �0 ), ( �1 , �2,…,�n ) 
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Fig. 1  Proposed bragging-based ensemble model demonstrating the modeling of trend using ensemble 
model and seasonality modeling using bragged ensemble model
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and error coefficient ( �n ). Autocorrelation function (ACF) is applied to determine 
the coefficient of the time series.

2. The Fourier transform is done to get the weights of the components of the time-
series.

3. The series is checked for stationarity by performing ADF (augmented Dickey–
Fuller) test on the series. If the series is nonstationary, differencing is done to 
convert the series into stationary form. Mathematically, it is represented as

4. An additive STL (seasonality trend estimation using loess) decomposition is 
performed on the time series data yn to divide it into its three components, i.e. 
seasonality Sn , trend Tn , and residual Rn . Additive STL decomposition is suited 
the most appropriate when the seasonality does not vary as the variation in the 
time series. If the seasonal variations are more, multiplicative STL decomposition 
is performed. Residual Rn component is removed from the decomposition.

5. Base models are applied to the trend part of the decomposed time series. The final 
value of trend forecast is calculated as the average of all the models.

6. Seasonality is sampled n times randomly and constructing a bootstrap Sample 
( S∗

1
, S∗

2
 , ……, S∗

n
 ) with replacement from the values ( S1, S2,… , Sn ). Next is to 

compute the bootstrapped forecast as

7. Step 6 is repeated m no. of times to create Ḟ∗k(⋅), k = 1, 2,… ,m; the final season-
ality forecast is obtained by taking the median of all the m forecasts.

8. Final forecast is evaluated by aggregating trend forecast and seasonality forecast.

The pseudocode of the proposed model is given below.

(1)
yn = �0 + �1yn−1 + �2yn−2 + �n;

ACF, k = 1, 2,… , n.

(2)F(s) = ∫
∞

−∞

(yn).

(3)y�
n
= yn − yn−1.

(4)Trend Forecast
�

yn+1
�

=

∑n

i=1
Modeli(Tn)

n
.

(5)Ḟ∗(⋅) = forecast
(

S∗
1
, S∗

2
,… , S∗

n

)

.

(6)SeasonalityḞ∗

final
(⋅) = Median

m
∑

k=1

(

Ḟ∗k(⋅)
)

.
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Materials and Methods

This section provides the details of applying the proposed data ensemble tech-
nique on the selected dataset and stepwise experiments performed on the pro-
posed technique. The statistical tool termed R is employed for the application 
of the proposed model and disease forecasting. Experimental disease data come 
from the Center for Health Protection, Department of Health (https ://www.chp.
gov.hk). Monthly Chickenpox disease data give the total number of infections 
from the year 1999 to 2019. In contrast, Food Poisoning data are from the year 
2000 to 2019 and contains the reason for the food poisoning like bacteria, chemi-
cals, viruses, biotoxin, and other factors. Dengue data are collected from the year 
2002 to 2019. Tuberculosis data are from the year 1995 to 2019. The preprocess-
ing, i.e., cleaning, handling missing values by replacing with the average value, 
is applied to the disease data, and the data are prepared for further processing. 
Further, the data split is done into the training and testing set in the ratio of 80% 
and 20%, respectively. Table 1 represents the sample of the tuberculosis dataset 
collected for experimentation purpose. The dataset represents the no. of cases and 
deaths of male and female patients. A comprehensive description of the methods 
employed in the model is given below.

Handling Seasonality

CART is a recursive tree-based method that finds the best fit by selecting the node 
which maximizes the information gain. RPART implementation of this method in 
R is used to create binary trees. Lag and cosine of the daily and weekly season 
are found to be the variables of most importance. The number of splits is taken 
to be 600. Hyperparameter tuning is done manually by keeping the complexity 
parameter as 0.000001, min split to 2, and max depth to 30.

Table 1  Statistics measures of 
ADF test

Year Month Outbreaks Persons affected

2019 January 7 26
2019 February 24 216
2019 March 21 90
2019 April 17 62
2019 May 24 74
2019 June 35 90
2019 July 20 86
2019 August 11 26
2019 September 21 60
2019 October 17 69
2019 November 5 12
2019 December 10 37

https://www.chp.gov.hk
https://www.chp.gov.hk
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Handling Trend

ARIMA() implementation of the ARIMA forecast in R is applied by keeping the 
confidence level as 95. NNAR handles the seasonality as ARIMA, but it also han-
dles the nonlinear functions. NNAR is implemented through the method nnetar() 
available in the forecast package of R. SNaive is the method of handling high 
seasonal data, and is implemented using R implementation as snaive() by keeping 
the value as 5. Spline is a non-parametric function that is used to smooth the data 
by interpolation. The implementation used the Spline() implementation of R.

Handling Overfitting

Overfitting occurs when the fitted model does not generalize well to the unseen 
data. This can be calculated by calculating the predictive accuracy of the model 
on the training data as well as testing data. For handling overfitting, 100 values of 
bootstrapped forecasts by CTREE (Conditional Inference Trees) are performed. 
Sampling for the bootstrapping is done with replacement in the ratio of 70%. 
RPART (Recursive Partitioning And Regression Trees) value of MAPE (Mean 
Absolute Percentage Error) metrics of tuberculosis, dengue data, food poisoning, 
and chickenpox, when applied on the training data, comes out to be 0.55, 0.01, 
0.28, 0.36, respectively, which shows that the model fits accurately on the train-
ing data. However, in the case of testing data, the MAPE error metrics of tubercu-
losis, dengue data, food poisoning, and chickenpox are 32.43, 35.6, 43.12, 56.71, 
respectively. The testing error metrics clearly shows the problem of overfitting. 
Hence, bootstrapping is going to be a viable solution.

Time Series Representation and STL Decomposition

Time series representation is used to represent the collected data, training data, 
and test data, respectively, as demonstrated in Fig. 2. The graph in the series rep-
resents the original time series representation of the data demonstrating trend 
and seasonality. To understand the three essential properties, namely seasonal-
ity, trend, and residual, STL decomposition (based on loess regression) of the 
time series data is applied. Out of the four selected diseases, the trend of TB is 
almost constant; dengue cases show an upward trend, whereas chickenpox and 
food poisoning show a declining trend. TB dataset shows a concept drift in 1995 
and 2000; dengue in the year 2018 and 2019; chickenpox in 2007; and food poi-
soning in the year 2006.

Application of Ensembling Model

The training dataset is sampled with replacement with a ratio of 70%. The models 
are trained on a new train set. 100 boots are taken, and the procedure is repeated 
for 100 boots. The median of the predictions is taken as the final aggregate 
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prediction. The training set consists of the 1-year lagged data, and the double 
seasonality Fourier series is applied. In Fig. 3 are the graphs of the median of the 
forecasts.

Results and Discussion

To check the stationarity of the time series data, the ADF test is done. The value of 
the test statistics is given in Table 2.

If the test statistics’ value is greater than the critical value, the time series is non-
stationary. The results demonstrated in Table 1 show that the statistics is higher than 
the critical value, and hence the series is not stationary. The coefficient of determi-
nation ( R2 ) is used to determine the coefficient of time series.

Table 3 comprises average errors of predictions as different error metrics for base 
models and the ensemble model. The ensemble model is found to be the most accu-
rate where the error metrics are minimum for all the disease datasets. Also, the data-
sets of chickenpox and food poisoning, which uncover higher values of error metrics 
for base models, have also shown a significant decline in the values of error metrics. 
MAE, i.e., the mean average error of the ensemble model for the tuberculosis, den-
gue, food poisoning, and chickenpox are 1.58, 1.89, 11.45, and 15.68, respectively. 
Amongst the base models, NNAR has shown the best performance with the MAE 

Fig. 2  Time series representation of disease datasets to demonstrate the trend and seasonality in the data
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error metrics being: 2.97, 2.75, 14.59, and 24.12 for diseases in the same order as 
given above, respectively. The ensemble model enhances the predictive accuracy 
for the tuberculosis, dengue, food poisoning, and chickenpox by 46.80%, 31.27%, 
21.52%, 34.99% as compared to the independent NNAR model, respectively.

Further, the base models selected for modeling the trends of the dataset also 
have shown the minimum value of the error metrics, which further establishes the 
justification of the selected base models. NNAR, ARIMA, SNaive, Spline dem-
onstrates the lowest value of error metrics with NNAR outperforming all the base 
models with values being 2.97, 2.75, 14.59, and 24.12 for tuberculosis, dengue, 

Fig. 3  Application of ensemble model on the bootstrapped datasets. Lighter grey lines represent the indi-
vidual forecasts of the model. Red line represents the final forecast

Table 2  Statistics measures of 
ADF test Test statistics 0.815369

p value 0.991880
No. of lags 13.000000
Critical value (1%) − 3.481682
Critical value (5%) − 2.884042
Critical value (10%) − 2.578770
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food poisoning, and chickenpox, respectively. The value of different error metrics 
for the NNAR base model is given in Table 3. The value evaluated is 0.89, repre-
senting a good fit. The Wilcoxon rank sum test [19] is applied to evaluate the per-
formance of the proposed model with respect to the base models. As the residual 
errors are non-parametric, so a non-parametric test is applied to check the validity 
of the proposed model. A significance level α = 0.05 showed that the proposed 
model performs better than the base models (Table 4).

Further, state of the art ensemble models, namely DETS (Dynamic Ensemble 
for Time Series) [31], ADE (Arbitrated Dynamic Ensemble) [32], and Random 
Forest [33] are implemented, and a comparison is made with the proposed ensem-
ble model in Table 5.

The proposed ensemble model is compared with the best performing existing 
ensemble model and the percentage comparison is given in Table 6. The results 
show the efficacy of the proposed model with existing state-of-the-art ensemble 
models.

Table 3  MAE error metrics result after the application of base model on disease datasets

Base learners MAE

Tuberculosis Dengue Food poisoning Chicken pox

Theta forecasting 13.40 2.48 49.65 54.12
Moving average 14.63 4.58 56.01 46.86
Spline 13.64 4.19 37.06 33.71
Naïve 9.56 3.84 21.58 30.41
Random walk with drift 9.55 3.84 42.25 44.25
Croston’s method 16.58 3.31 49.96 47.97
Holt winter 12.57 3.36 47.58 44.41
Simple exponential smoothing 12.55 3.34 65.38 43.44
Seasonal naïve 3.59 3.43 18.57 39.24
NNAR 2.97 2.75 14.59 24.12
ETS 4.26 2.88 88.31 56.46
ARIMA 3.50 2.92 31.78 37.78

Table 4  Error metrics result 
of best performing base model 
(NNAR) on disease datasets

Disease RMSE MAE MAPE

Tuberculosis 4.34 2.97 0.82
Dengue 3.70 2.75 0.82
Food poisoning 19.57 14.59 0.76
Chickenpox 13.50 24.10 0.39
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Conclusions

In summary, the research work exhibits the application of the ensembling 
approach to blend forecasts from multiple models of disease incidence prediction. 
The work presented here, along with predictive accuracy enhancement, focuses 
on three main properties, precisely concept drift, overfitting, and handling outli-
ers. The proposed model shows promising results in terms of error metrics when 
compared with state-of-the-art ensemble models. As more data related to commu-
nicable disease outbreaks are operationalized and merged into public health data 
repositories, it will be more significant to combine dissimilar forecasts and merge 
information from each so as to obtain the most accurate prediction of an unfold-
ing disease outbreak. For future scope, more geographical and temporal depend-
encies can be incorporated to make the model more robust concerning regional 
outbreaks.

Table 5  Error metrics result after the application of proposed model on disease datasets

#  indicates minimum value of the error metric

Ensemble models RMSE MAE MAPE

DETS-time series ensemble model (tuberculosis) 4.15# 2.17# 0.86#

ADE-time series ensemble model (tuberculosis) 4.27 2.56 0.87
Random forest (tuberculosis) 5.86 3.04 1.24
Proposed ensemble model (tuberculosis) 2.25# 1.58# 0.54#

DETS-time series ensemble model (dengue) 3.19# 1.95# 0.78#

ADE-time series ensemble model (dengue) 3.26 2.31 0.91
Random forest (dengue) 5.26 3.56 1.13
Proposed ensemble model (dengue) 1.43# 1.89# 0.34#

DETS-time series ensemble model (food poisoning) 14.51 11.95 0.25
ADE-time series ensemble model (food poisoning) 16.23 12.34 0.31
Random forest (food poisoning) 19.54 21.87 0.95
Proposed ensemble model (food poisoning) 11.56# 11.45# 0.13#

DETS-time series ensemble model (chickenpox) 14.53 18.12 0.21
ADE-time series ensemble model (chickenpox) 15.31 20.12 0.28
Random forest (chickenpox) 20.08 24.53 0.34
Proposed ensemble model (food poisoning) 12.78# 15.68# 0.26#

Table 6  Comparison of percentage decrease in error metrics of proposed ensemble model vis-à-vis other 
ensemble models

Ensemble models RMSE (%) MAE (%) MAPE (%)

Proposed ensemble model (tuberculosis) 45.17 27.18 37.20
Proposed ensemble model (dengue) 55.17 3.07 56.41
Proposed ensemble model (food poisoning) 20.33 4.18 48
Proposed ensemble model (food poisoning) 12.04 13.46 − 23.8
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