
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2023.032432

Article

Automated Artificial Intelligence Empowered White Blood Cells
Classification Model

Mohammad Yamin1, Abdullah M. Basahel1, Mona Abusurrah2, Sulafah M Basahel3,
Sachi Nandan Mohanty4 and E. Laxmi Lydia5,*

1Faculty of Economics and Administration, King Abdulaziz University, Jeddah, Saudi Arabia
2Department of Management Information Systems, College of Business Administration, Taibah University,

Al-Madinah, Saudi Arabia
3E-commerce Department, College of Administrative and Financial Sciences, Saudi Electronic University, Jeddah,

Saudi Arabia
4School of Computer Science & Engineering (SCOPE), VIT-AP University, Amaravati, Andhra Pradesh, India

5Department of Computer Science and Engineering, Vignan’s Institute of Information Technology, (Autonomous),
Visakhapatnam, Andhra Pradesh, 530049, India

*Corresponding Author: E. Laxmi Lydia. Email: elaxmi2002@yahoo.com
Received: 18 May 2022; Accepted: 21 June 2022

Abstract: White blood cells (WBC) or leukocytes are a vital component of
the blood which forms the immune system, which is accountable to fight
foreign elements. The WBC images can be exposed to different data analysis
approaches which categorize different kinds of WBC. Conventionally, labora-
tory tests are carried out to determine the kind of WBC which is erroneous
and time consuming. Recently, deep learning (DL) models can be employed
for automated investigation of WBC images in short duration. Therefore,
this paper introduces an Aquila Optimizer with Transfer Learning based
Automated White Blood Cells Classification (AOTL-WBCC) technique. The
presented AOTL-WBCC model executes data normalization and data aug-
mentation process (rotation and zooming) at the initial stage. In addition,
the residual network (ResNet) approach was used for feature extraction in
which the initial hyperparameter values of the ResNet model are tuned by the
use of AO algorithm. Finally, Bayesian neural network (BNN) classification
technique has been implied for the identification of WBC images into distinct
classes. The experimental validation of the AOTL-WBCC methodology is
performed with the help of Kaggle dataset. The experimental results found
that the AOTL-WBCC model has outperformed other techniques which are
based on image processing and manual feature engineering approaches under
different dimensions.
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1 Introduction

White blood cells (WBC), or leucocytes, acts as an important part in safeguarding the human
from foreign invaders and dangerous diseases, which include bacteria and viruses. WBC is classified
into 4 major types, such as lymphocytes, monocytes, neutrophils, and eosinophils and it is recognized
by its operational and physical features [1]. WBC count is very significant in deciding the presence and
diagnosis of diseases as such WBC subtype counts taken into consideration for the importance of the
healthcare sector. Generally, such cell counts were conducted manually, but it could be applied in labs
which do not have accessibility to anyone of the automated instruments [2]. During manual distinctive
methodology, a diagnostician examines the blood samples through a microscope for determining the
count and categorizes such leucocytes [3]. Automatic system predominantly utilize Coulter counting,
cytochemical, and dynamic and static light scattering blood sample testing processes. In such process,
the data will be examined and plotted for forming particular groups which relate to distinct leucocyte
types [4,5]. But, whenever variant or abnormal WBCs were existing, such automated outcomes were
probably mistaken, and therefore, the manual distinctive methodology was taken as a favorable choice
in determination of the count and categorization of WBC. Leukemia arises because of huge quantity
of WBCs in the immune system, that protects the platelets and red blood cells (RBCs) of blood which
have to be healthy [6]. On the basis of developing speed and its impacts, physicians classify this into
4 types they are lymphocytic leukemia, acute leukemia, chronic leukemia, and myelogenous leukemia
[7]. Leukemia is a disease that occurs in death. For overcoming the disease severity, it becomes essential
to identify the shapes of immature cells in the primary stages which diminishes the death rate. Most
of the researchers recommended distinct methods and systems for the detection, segmentation, and
categorization of leukemia, and yet, there exist certain gaps in this field.

Commonly, the recognition needs a lab setting in which received images of blood cells were stained
with the help of specialized chemicals (e.g., reagents), and then it is analyzed through a microscope
by an expert [8]. But this procedure was very sensitive and needs a no or minimum analysis mistake
by the expert. Unluckily, experts might be tired after numerous hours of check-ups and that results
in erroneous recognition of the distinct WBC. Deep learning (DL) utilizing Convolution Neural
Networks (CNN) is recently the finest option in medical imaging application areas like classification
and detection [9]. CNNs attain the finest outcomes on huge data sets, it needs much more data
and computational sources for training purposes. Sometimes the dataset is restricted and it is not
adequate for training a CNN from scratch. In such cases, using the power of CNNs and reducing the
computational costs, transfer learning (TL) could be utilized [10]. In this method, the CNN is primarily
pretrained over a great and varied generic image datasets and implied to a particular task.

This paper introduces an Aquila Optimizer with Transfer Learning based Automated White
Blood Cells Classification (AOTL-WBCC) technique. The presented AOTL-WBCC model executes
data normalization and data augmentation process (rotation and zooming) at the initial stage. In
addition, the residual network (ResNet) model was employed for feature extraction in which the initial
hyperparameter values of the ResNet system are tuned by the use of AO algorithm. Finally, Bayesian
neural network (BNN) classification methodology is implemented for the identification of WBC
images into distinct classes. The experimental validation of the AOTL-WBCC method is performed
with the help of Kaggle dataset.

2 Related Works

In [11], the authors illustrate WBC classification into 6 types such as eosinophils, lymphocytes,
neutrophils, basophils, abnormal cells, and monocytes. The authors offer the comparability of DL
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methods and classical image processing techniques for WBC classification. Lu et al. [12] suggest
a DL network known as WBC-Net, that references ResNet and UNet ++. In specific, WBC-Net
devise a context aware feature encoder having residual blocks for extracting multi-scale structures,
and launches mixed skip pathways over the dense convolutional blocks for acquiring and fusing image
features at distinct scales. In addition to this, WBC-Net utilizes a decoder integrating deconvolution
and convolution for refining the WBC segmentation mask. Also, WBC-Net describes a loss function
on the basis of the Tversky index and cross-entropy for training the network.

In [13], the authors build a new CNN method termed as WBCNet system which is able to com-
pletely derive features of the microscopic WBC image through merging improved activation function,
batch normalization algorithm, and residual convolution architecture. WBCNet system consists of 33
layers of network structure, whereof speed was highly enhanced than conventional CNN system at the
time of training, and it could rapidly find the type of WBC images. Cheuque et al. [14] grant a 2-stage
hybrid multi-level structure which effectively categorizes 4 cell groups they are segmented neutrophils,
lymphocytes, eosinophils (polymorphonuclear), and monocytes (mononuclear). In the initial stage, a
Faster region based CNN (R-CNN) network was implied for the recognition of the areas of interest of
WBC, along with the division of mononuclear cell from polymorphonuclear cell. After the separation,
2 parallel CNNs with the MobileNet framework were utilized for identifying the subcategories in the
next stage.

Dong et al. [15] suggest a WBC classification method which incorporates artificial and deep
learning features. This methodology not just utilizes artificial features, since further complies the
self-learning abilities of Inception V3 for making complete usage of the feature information of the
image. Meanwhile, this article presents the TL algorithm for solving the issue of the dataset limits.
Manthouri et al. [16] offer a deep neural network (DNN) for functioning of microscopic imageries
of blood corpuscles. Processing such imageries become an important one as WBC and its features
were utilized for diagnosing distinct diseases. In this study, the authors devise and apply a dependable
processing system for blood samples and categorize 5 various kinds of WBC under microscopic
imageries. The authors employ the Gram-Schmidt method for the purpose of segmentation. In order to
classify different kinds of WBC, the authors merge deep CNN and Scale-Invariant Feature Transform
(SIFT) feature recognition methods.

3 The Proposed Model

In this article, a novel AOTL-WBCC approach was advanced for the detection and classification of
WBC. The presented AOTL-WBCC technique follows a sequence of processes namely pre-processing,
data augmentation, ResNet50 related feature extraction, AO related hyperparameter optimization,
and BNN related classification. Fig. 1 shows the overall process of AOTL-WBCC approach.

3.1 Data Preprocessing

The data underwent a normalization pre-processing method to retain its arithmetical stability
to DL model. At first, WBC image is in an RGB format with pixel values of 0 to 255. Through
normalizing the input image, the DL model is quickly trained. To increase the efficacy of the DL
models, a large set of data is needed. But accessing the dataset frequently comes with many constraints.
Thus, to overcome the challenges, data augmentation technique is applied to rise the sample image
count in the sample data. Data augmentation models like Rotation and Zooming are employed.
The rotation data augmentation method is executed in a clockwise direction with an angle of 90
degree. Also, zooming augmentation method is implemented on image data by taking the 0.5 and
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0.8 zooming factor values. To over the imbalance problem, the abovementioned data augmentation
technique is implemented. After using the data augmentation technique, the sample data in every class
was improved.

Figure 1: Overall process of AOTL-WBCC technique

3.2 Feature Extraction: ResNet50 Model

Next to data pre-processing, the ResNet50 model is utilized for feature extraction. It is a deep
convolution network where the underlying concept is to avoid blocking of convolution layer with the
aid of shortcut connection [17]. The elementary block known as “bottleneck” block follows two basic
rules one is for a similar output feature map size, the layer has a similar amount of filter and another
one is when the feature map size can be halved, the filter count is doubled. The down-sampling can be
straightly implemented by convolution layer that has a stride of 2 and BN can be implemented before
rectified linear unit (ReLU) activation and immediately after every convolution. Once the output and
input are of a similar dimension, the identity shortcut is utilized. Once the dimension increases, the
presented shortcut is utilized for matching dimensions via 1 × 1 convolution. In both scenarios, once
shortcut goes across feature map of 2 sizes, they can be implemented with a stride of 2.

With transfer learning technique, we transported the initial forty-nine layers of ResNet-50 that
may left frozen on the WBC classification method. This layer is viewed as learned feature extraction
layer. The activation map produced via learned feature extraction layer is generally known as
bottleneck feature. With the bottleneck feature of WBC image as input, we trained a twenty-five FC
softmax layer, because we have twenty-five classes, and later replaces the 1,000 FC softmax layers by
the trainable twenty-five FC softmax layers.
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3.3 Hyperparameter Optimization

In this study, the initial hyperparameter values of the ResN et algorithm are tuned by the use of AO
algorithm [18,19]. AO is a population based algorithm, the prominent rules initiates by the population
of candidate solution (X) as follows, stochastically created between the lower boundary (LB) and
upper boundary (UB) of the given problem [20]. An optimal solution attained in each iteration is
determined by the following matrix

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1,1 · · · x1,j x1,Dim−1 x1,Dim

x2,1 · · · x2,j · · · x2,Dim

· · · · · · xi,j · · · · · ·
...

...
...

...
...

xN−1,1 · · · xN−1,j · · · xN−1,Dim

xN,1 · · · xN,j xN,Dim−1 xN,Dim

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

In Eq. (1) X denotes the set of existing candidate solutions that are arbitrarily created by the
following equation, Xi denotes the decision value of ith solution, N refers to the overall number of
candidate solutions (population), and Dim stands for the dimension problem.

Xij = rand × (
UBj − LBj

) + LBj, i = 1, 2, . . . .., Nj = 1, 2, . . . , Dim (2)

In Eq. (2), the arbitrary number can be represented as rand, the jth lower bound is denoted by LBj,
and the jth upper bound is characterized by UBj. The AO algorithm was transmitting in exploration to

exploitation phases using discrete performance based on the term when t ≤
(

2
3

)
∗T the exploration

stage is implemented; otherwise, the exploitation stage is carried out. Here, the AO enormously
explorer in great soar to determine the searching region. In the following, the mathematical expression
of the given problem is demonstrated.

X1 (t + 1) = Xbest (t) ×
(

1 − t
T

)
+ (XM (t) − Xbest (t) ∗ rand) (3)

In Eq. (3), the solution of subsequent round of t is represented as X1 (t + 1) that is generated
by primary search model (X1). Xbest (t) indicates the optimal solution attained until tth iteration, this

regenerates the assessed prey location. The equation
(

1 − t
T

)
is used for controlling the extended

search (exploration) with the iteration count. XM (t) determines the place mean value of existing
solution related at tth iteration viz. calculated using the following equation. The arbitrary value ranges
from [0, 1] is indicated as rand. r and T correspondingly demonstrate the current and the maximal
rounds.

XM (t) = 1
N

∑N

i=1
Xj (t) , ∀j = 1, 2, . . . , Dim (4)

In Eq. (4). The dimensional size of the problem can be represented by the term Dim and the
population size is represented by the term N. Fig. 2 depicts the flowchart of AO algorithm.

If the prey position was begin in a great soar, the Aquila circle over the target, places the land,
and subsequent attack, during the next searching technique(X2). The mathematical expression can be
represented as follows.

X2 (t + 1) = Xbest (t) × Levy (D) + XR (t) + (y − x)
∗ rand (5)
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Figure 2: Flowchart of AO algorithm

In Eq. (5), X2 (t + 1) indicates the solution of following iteration of r which can be generated
through the second technique (X2). D denotes the dimensional space, and Levy (D) denotes the levy
flight distribution function that is calculated by the following equation. XR (t) refers to the arbitrarily
attained solution from the interval of [1N] at ith iterations.

Levy (D) = s × u × σ

|v| 1
β

(6)

In Eq. (6), s denotes the constant value is fixed as 0.01, u and v indicates the arbitrary number lies
within [0, 1]. σ can be evaluated by the following expression.

σ =

⎛
⎜⎜⎝

� (1 + β) × sine
(

πβ

2

)

�

(
1 + β

2

)
× β × 2

(
β − 1

2

)
⎞
⎟⎟⎠ (7)

In Eq. (5), y and x are applied to provide the spiral shape in the search technique is evaluated by:

y = r × cos (θ) (8)

x = r × sin (θ) (9)

where,

r = r1 + U × D1 (10)

θ = −ω × D1 + θ1 (11)

θ1 = 3 × π

2
(12)
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r1 get the value within the range of [1–20] to set the number of searching cycles, U represents the less
value fixed as 0.00565. D1 determines the integer number in 1 to the length of searching space(Dim),
and ω refers to the lesser value fixed as 0.005. Here, the AO makes use of the preferred area of the
target to get the nearby prey, and attack is arithmetically expressed by using subsequent formula.

X3 (t + 1) = (Xbest (t) − XM (t)) × α − rand + ((UB − LB) × rand + LB) × δ (13)

In Eq. (12), the solution of succeeding round of r implies the expression X3 (r + 1) specifically
generated by 3rd search technique (X3). Xbest (t) denotes the evaluated position of prey until ith iteration
(the optimal obtained solution), and XM (t) signifies the mean value of existing solution at rth iteration
that is calculated. rand indicates the arbitrary integer lies within [0, 1]. In the fourth manner (X4), the
Aquila turn out to be near the prey, the Aquila attacks the prey on the land according to stochastic
movement and it is formulated by using the succeeding equation

X4 (t + 1) = QF × Xbest (t) − (G1 × X (t) × rand) − G2 × Levy (D) + rand × G1 (14)

In Eq. (14), X4 (t + 1) denotes the solution of following t iteration that has been produced by the
fourth manner (X4). QF illustrates the quality function applied to equilibrium the searching process
that is calculated.

According to this article, the reduction of the classifier error rate was regarded as the fitness
function, as provided in Eq. (15). The optimum resolution contains minimum error rates and the poor
resolution reaches a higher error rates.

fitness (xi) = Classifier Error Rate (xi)

= number of misclassified WBC images
Total number of WBC images

∗ 100 (15)

3.4 WBC Classification

Finally, the BNN classification algorithm can be implied for the identification of WBC images into
distinct classes. It provides a probabilistic interpretation of DL model by positioning distribution over
the neural network weight [21]. Assume that trained data D = {x, y} with input x = {x1, . . . , xN} and
respective output y = {y1, . . . , yN}, in parametric Bayesian settings, we would like to infer a distribution
over w weight as a function y = fw (x) which indicates the neural network (NN) mechanism. A previous
distribution is allocated over the p (w) weights that capture previous beliefs where the parameter
has generated the output beforehand observing any dataset. Assume that the evidence dataset p(y|x),
previous model, and distribution likelihood p(y|x, w), the goal is inferring the latter distribution over
the p(w|D) weights:

p (w|D) = p (y|x, w) p (w)∫
p (y|x, w) p (w) dw

(16)

Compute the latter distribution p(w|D) is frequently intractable, few presented techniques accom-
plish an analytically tractable inference including expectation propagation, variational inference,
Markov Chain Monte Carlo (MCMC) sampling related probabilistic inference, Monte Carlo dropout
and approximate inference. Prediction distribution can be attained by more than one stochastic
forward pass on the network while sampling from the weight posterior through Monte Carlo estimator.
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Eq. (17) illustrates the prediction distribution of output y∗ assumed new input x∗:

p(y∗|x∗, D) =
∫

p(y∗|x∗, w)p(w|D)dw

p (y∗|x∗, D) ≈ 1
T

∑T

i=1
p (y∗|x∗, wi) , wi ∼ p (w|D) (17)

In Eq. (17), number of Monte Carlo samples can be represented as T .

4 Performance Validation

The experimental validation of the AOTL-WBCC methodology can be tested with the use
of the blood cell images from the Kaggle dataset (available at https://www.kaggle.com/datasets/
paultimothymooney/blood-cells). It includes four classes and the details regards to the dataset are
shown in Table 1. Some sample images are displayed in Fig. 3.

Table 1: Dataset details

Label Name Before augmentation After augmentation

Class 1 EOSINOPHIL 3120 9360
Class 2 LYMPHOCYTE 3103 9309
Class 3 MONOCYTE 3098 9294
Class 4 NEUTROPHIL 3123 9369

Figure 3: (Continued)

https://www.kaggle.com/datasets/paultimothymooney/blood-cells
https://www.kaggle.com/datasets/paultimothymooney/blood-cells
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Figure 3: Sample images

Fig. 4 demonstrates a clear set of confusion matrices generated by the AOTL-WBCC model on
varying sizes of training (TR) and testing (TS) data. The figure pointed out that the AOTL-WBCC
model has shown effectual identification of WBC classes under all aspects.

Figure 4: (Continued)
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Figure 4: Confusion matrices of AOTL-WBCC technique (a) 70% of TR data, (b) 30% of TS data, (c)
80% of TR data, and (d) 20% of TS data

Table 2 provides an overall WBC classification results of the AOTL-WBCC model on 70% of TR
and 30% of TS data. Fig. 5 reports the result analysis of the AOTL-WBCC model on 70% of TR data.
The figure implied that the AOTL-WBCC model has offered enhanced outcomes in the classification
of each WBC class. For instance, the AOTL-WBCC model has recognized class 1 samples with accuy,
precn, sensy, specy, and Fscore of 98.37%, 96.43%, 97.10%, 98.80%, and 96.76% respectively. In addition,
the AOTL-WBCC approach has recognized class 3 samples with accuy, precn, sensy, specy, and Fscore

of 97.44%, 95.60%, 94.08%, 98.56%, and 94.84% correspondingly. Also, the AOTL-WBCC algorithm
has recognized class 4 samples with accuy, precn, sensy, specy, and Fscore of 99.06%, 98.34%, 97.90%,
99.45%, and 98.12% correspondingly.

Table 2: Result analysis of AOTL-WBCC approach under 70% of TR and 30% of TS data

Label Accuracy Precision Sensitivity Specificity F-Score

Training phase (70%)
Class 1 98.37 96.43 97.10 98.80 96.76
Class 2 97.94 95.26 96.55 98.40 95.90
Class 3 97.44 95.60 94.08 98.56 94.84
Class 4 99.06 98.34 97.90 99.45 98.12
Average 98.20 96.41 96.41 98.80 96.40
Testing phase (30%)
Class 1 98.38 96.57 96.98 98.84 96.78
Class 2 97.98 95.47 96.49 98.48 95.98
Class 3 97.65 95.84 94.55 98.66 95.19

(Continued)
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Table 2: Continued
Label Accuracy Precision Sensitivity Specificity F-Score

Class 4 99.17 98.45 98.27 99.47 98.36
Average 98.29 96.58 96.57 98.86 96.58

Figure 5: Result analysis of AOTL-WBCC algorithm under 70% of TR data

Fig. 6 defines the result analysis of the AOTL-WBCC methodology on 30% of TS data. The figure
exposed the AOTL-WBCC methodology has obtainable higher outcome on the classification of each
WBC class. For instance, the AOTL-WBCC algorithm has recognized class 1 samples with accuy, precn,
sensy, specy, and Fscore of 98.38%, 96.57%, 96.98%, 98.84%, and 96.78% correspondingly. Likewise, the
AOTL-WBCC model has recognized class 3 samples with accuy, precn, sensy, specy, and Fscore of 97.65%,
95.84%, 94.55%, 98.66%, and 95.19% correspondingly. Eventually, the AOTL-WBCC algorithm has
recognized class 4 samples with accuy, precn, sensy, specy, and Fscore of 99.17%, 98.45%, 98.27%, 99.47%,
and 98.36% respectively.

Table 3 offers an overall WBC classification outcome of the AOTL-WBCC methodology on 80%
of TR and 20% of TS data. Fig. 7 reports the result analysis of the AOTL-WBCC approach on 80%
of TR data. The figure exposed the AOTL-WBCC approach contains obtainable enhanced results
on the classification of each WBC class. For sample, the AOTL-WBCC model has recognized class
1 samples with accuy, precn, sensy, specy, and Fscore of 98.90%, 97.56%, 98.05%, 99.18%, and 97.81%
correspondingly. Followed, the AOTL-WBCC algorithm has recognized class 3 samples with accuy,
precn, sensy, specy, and Fscore of 97.70%, 96.56%, 94.11%, 98.89%, and 95.32% respectively. At last, the
AOTL-WBCC system has recognized class 4 samples with accuy, precn, sensy, specy, and Fscore of 99.20%,
98.09%, 98.72%, 99.36%, and 98.40% respectively.



420 CMC, 2023, vol.75, no.1

Figure 6: Result analysis of AOTL-WBCC algorithm under 30% of TS data

Table 3: Result analysis of AOTL-WBCC approach under 80% of TR and 20% of TS data

Label Accuracy Precision Sensitivity Specificity F-Score

Training phase (80%)

Class 1 98.90 97.56 98.05 99.18 97.81
Class 2 98.08 95.53 96.84 98.49 96.18
Class 3 97.70 96.56 94.11 98.89 95.32
Class 4 99.20 98.09 98.72 99.36 98.40

Average 98.47 96.93 96.93 98.98 96.93

Testing phase (20%)

Class 1 98.63 96.60 97.95 98.86 97.27
Class 2 98.29 95.70 97.46 98.56 96.57
Class 3 97.83 97.08 94.18 99.05 95.61
Class 4 99.12 98.36 98.15 99.44 98.25

Average 98.47 96.93 96.93 98.98 96.93
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Figure 7: Result analysis of AOTL-WBCC algorithm under 80% of TR data

Fig. 8 demonstrates the result analysis of the AOTL-WBCC system on 20% of TS data. The
figure implied that the AOTL-WBCC model has accessible improved outcomes on the classification of
each WBC class. For instance, the AOTL-WBCC method has recognized class 1 samples with accuy,
precn, sensy, specy, and Fscore of 98.63%, 96.60%, 97.95%, 98.86%, and 97.27% respectively. Similarly,
the AOTL-WBCC model has recognized class 3 samples with accuy, precn, sensy, specy, and Fscore of
97.83%, 97.08%, 94.18%, 99.05%, and 95.61% correspondingly. Finally, the AOTL-WBCC algorithm
has recognized class 4 samples with accuy, precn, sensy, specy, and Fscore of 99.12%, 98.36%, 98.15%,
99.44%, and 98.25% correspondingly.

Figure 8: Result analysis of AOTL-WBCC algorithm under 20% of TS data
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The training accuracy (TA) and validation accuracy (VA) attained by the AOTL-WBCC approach
on test dataset is illustrated in Fig. 9. The experimental outcome implied that the AOTL-WBCC
approach has gained maximum values of TA and VA. In specific, the VA seemed to be higher than TA.
The training loss (TL) and validation loss (VL) achieved by the AOTL-WBCC system on test dataset
are established in Fig. 10. The experimental outcome inferred that the AOTL-WBCC methodology
has accomplished least values of TL and VL. In specific, the VL seemed that lower than TL.

Figure 9: TA and VA analysis of AOTL-WBCC algorithm

Figure 10: TL and VL analysis of AOTL-WBCC algorithm
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A brief precision-recall examination of the AOTL-WBCC methodology on test dataset is por-
trayed in Fig. 11. By observing the figure, it can be noticed that the AOTL-WBCC model has
accomplished maximal precision-recall performance under all classes.

Figure 11: Precision-recall curve analysis of AOTL-WBCC algorithm

A detailed receiver operating characteristic (ROC) examination of the AOTL-WBCC system on
test dataset is portrayed in Fig. 12. The results exposed the AOTL-WBCC algorithm has exhibited its
ability in categorizing four different classes 1–4 on test dataset.

Figure 12: ROC curve analysis of AOTL-WBCC algorithm
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Table 4 reports a brief comparison study of the AOTL-WBCC model with recent models. The
figure indicated the DenseNet121 and Inceptionv3 models have attained minimal accuy of 93.19% and
91.39% respectively.

Table 4: Comparative analysis of AOTL-WBCC approach with existing methodology

Methods Accuracy Sensitivity Specificity

DenseNet121 93.19 92.56 93.27
InceptionV3 91.39 90.98 90.50
Xception-LSTM 96.07 95.38 96.35
AlexNet 95.26 94.02 95.93
VGG16 96.67 96.21 95.71
MGCNN 97.90 96.49 96.32
AOTL-WBCC 98.47 96.93 98.98

Followed by, the Xception-LSTM, AlexNet, and VGG16 models have obtained moderately closer
accuy of 96.07%, 95.26%, and 96.67% respectively. Moreover, the multi-graph CNN (MGCNN) model
has accomplished reasonable accuy of 97.90%. But, the presented AOTL-WBCC methodology has
shown superior results with maximum accuy of 98.47%.

5 Conclusion

In this article, a novel AOTL-WBCC approach was enhanced for the classification and detection
of WBC. The presented AOTL-WBCC system follows a sequence of processes namely pre-processing,
data augmentation, ResNet50 related feature extraction, AO related hyperparameter optimization,
and BNN related classification. In this case, the initial hyperparameter values of the ResN et algorithm
are tuned by the use of AO algorithm. At last, the BNN classification algorithm has been implemented
for the identification of WBC images into distinct classes. The experimental validation of the AOTL-
WBCC model is performed using Kaggle dataset. The experimental results found that the AOTL-
WBCC model has outperformed other techniques which are based on image processing and manual
feature engineering approaches under different dimensions.
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