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a b s t r a c t

Wireless sensor network (WSN) comprises a collection of sensor nodes employed to monitor and
record the status of the physical environment and organize the gathered data at a central location.
This paper presents a deep learning based distributed data mining (DDM) model to achieve energy
efficiency and optimal load balancing at the fusion center of WSN. The presented DMM model includes
a recurrent neural network (RNN) based long short-term memory (LSTM) called RNN-LSTM, which
divides the network into various layers and place them into the sensor nodes. The proposed model
reduces the overhead at the fusion center along with a reduction in the number of data transmission.
The presented RNN-LSTM model is tested under a wide set of experimentation with varying number
of hidden layer nodes and signaling intervals. At the same time, the amount of energy needed to
transmit data by RNN-LSTM model is considerably lower than energy needed to transmit actual data.
The simulation results indicated that the RNN-LSTM reduces the signaling overhead, average delay and
maximizes the overall throughput compared to other methods. It is noted that under the signaling
interval of 240 ms, it can be shown that the RNN-LSTM achieves a minimum average delay of 190 ms
whereas the OSPF and DNN models shows average delay of 230 ms and 230 ms respectively.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In general, Wireless Sensor Network (WSN) is a self-configured
and infrastructure-less wireless networks that helps to observe
the external and ecological status, like temperature, moisture,
movements and pollutants to pass the information via network
to sink from the data might be monitored as well as predicted. A
sink or base station (BS) has been treated as interface among the
network and user. By using such network, the user can able to
derive essential data by inducing queries and collect the required
details from BS. Generally, a WSN is composed of numerous
sensor nodes. Here, sensors are capable of communicating with
alternate nodes through the radio signals. It embeds processing
units, storage, radio transceivers and power elements. A single
node from WSN is composed of restricted computing speed,
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memory, communication bandwidth and so on. Once the sensor
node has been injected, it is responsible to self-organize in a
suitable network infrastructure along with multi-hop communi-
cation process within the system. Furthermore, wireless sensors
acknowledge for queries provided from a ‘‘control site’’ in order
to process only particular rules and sensing samples. Global Posi-
tioning System (GPS) as well as local positioning techniques could
be applied to derive the position and related data. It is constrained
with actuator which is considered as to be used only in specific
situations. Sometimes, it is assumed to be Wireless Sensor and
Actuator Networks.

WSN is capable to adopt novel techniques and acquires non-
conventional method for a protocol development because of var-
ious conditions. Due to the need for minimum complexity and
energy utilization for prolonged network lifespan, an appropriate
balance among signal and data computing abilities should be
identified. It leads to providing maximum energy in scientific
events. Recently, various types of developments in WSN takes
place in developing energy and computationally effective tech-
niques, whereas the domain is limited to simple data-oriented
and reporting fields. Moreover, a Cable Mode Transition (CMT)
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method that helps to compute the lower value of active sensor
nodes to balance the K-coverage from terrain and K-connectivity
of the system. In particular, it declares the time period of inactive
cable sensors with no influence of coverage as well as connection
requirements of network which is depend upon the local data.

Several energy efficient solutions for WSN operations based
on optimization algorithms and deep learning (DL) models have
been presented in the literature. In Cheng et al. [1], a delay-aware
data collection network for WSN is deployed. It mainly aims in
reducing the latency in data collecting process of WSN that tends
to elaborate the network lifetime. In Rahman and Matin [2], it
is assumed that more number of relay nodes has been adopted
to decrease the network vulnerability as well as Particle Swarm
Optimization (PSO) model is applied to place an optimized sink
position in terms of relay nodes to resolve the lifespan issue.

The design of WSN includes several constraints. The most
essential constraint is because of the fact that sensor nodes are
placed in an adverse region and it should be often recharged
with batteries. Hence, the sensor lifetime is dramatically reduced
compared with quantity of power induced in battery and the
way of conserving power. The management of power utilization
of sensors has been developed as an active research area. The
purpose of energy conservation is employed in data acquisition,
computing, reduction, transmission, etc. [3–5]. The data transmis-
sion process is considered to be the initial step in saving energy.
Therefore, such protocols could be treated as various layers in
communication namely physical layer, MAC layer, routing layer as
well as application layer. In case of MAC layer, maximum amount
of power has been attenuated while retransmitting the data once
the collision is completed, and control packet transmission in
the absence of applicable data or determining packets to attain
alternate sensor nodes. Only few protocols have been presented
to be treated on energy consumption. The S-MAC protocol [6],
applies time synchronization from sensors to isolate in a cycled
manner.

In order to save power and eliminate collision, PC-MAC pro-
tocol [7] has been deployed. In network layer, routing protocols
helps to reduce the power application by the mechanism of
packet delivery. Besides, it attempts to grab merits of higher
density of WSN. By developing novel WSN routing protocols is
a most promising issue. It is divided using the mechanism ap-
plied. Hence, routing protocols might be geocentric, data-centric,
applies network topology as well as link states. In case of data-
centric protocols, GKAR is assumed to be the instance of K-any
cast protocol. EASPRP [8] seeks for shortest path including energy
efficiency and EERT protocol [9] manages the Quality of Service
(QoS). In real-time applications, REFER protocol [10] employs
Kautz graphs. Only some of the routing protocols could be applied
in a combined manner in order to encircle a particular region. Few
routing protocols [11] apply the motion ability of mobile sensor
nodes. The GAROUTE protocol [12] utilizes genetic algorithm (GA)
to develop group of sensors to minimize communications. Here,
cluster heads (CH) could be deployed to compute local informa-
tion as well as to divide the respective data. LEACH protocol is
an applied cluster to manage the network traffic. It has been
altered [13] to enhance the delivery time and to reduce the inter-
ferences. EEDR protocol [14] mainly concentrates in transmitting
packet to decrease the power application. Alternate models has
been projected to minimize the power utilization and to improve
the lifetime of WSB. Huang J.-W [15] followed sensor coverage is
mainly applied for reducing the power application. The same op-
eration has been repeated in [16] that applied an SCC (Sponsored
Coverage Calculation) simulating model. Some other protocols
alleviate data transmissions such as SEPSen protocol [17] that
applies data processing throughout the system. The traffic as
well as resource management is utilized in [18]. Major types of
protocols apply wireless network simulators [19] respectively.

WSN has been employed in diverse applications namely land
cover classification [20], SCR node forecasting in vehicular sys-
tem, fault analysis, estimating the quality of groundwater [21].
Conventionally, such type of applications helps to determine the
sample data from fusion center. In case, WSN is comprised of
numerous sensor nodes, the function of computing sampling data
has been restricted by using fusion center’s hardware, which
is assumed to be costlier and more complex in upgrading fre-
quently. Therefore, data communication absorbs more amount of
energy, specifically for wireless relaying nodes. Data mining (DM)
methods are induced to obtain applicable data from numerous
data in the last a decade, which is assumed to be more efficient
tool applied in predicting larger data. For past decades, shallow
DM techniques namely, Support Vector Machine (SVM), boosting,
as well as Logistic Regression (LR) have been presented [22]. Also,
by applying these shallow DM models, it tends to enhance the fu-
sion center’s function; however, the issue in energy consumption
remained as unchanged. The solution to resolve these problems
is by implementing the techniques in sensors to minimize data
transmission, which is more tedious to be executed in WSN. In
addition, Hinton and Salakhutdinov [23] developed a deep DM
technique named called Deep Neural Network (DNN) that is used
in extracting the inner representation as well as to alleviate data
dimensionality. The DNN based DMM model has been presented
in [24].

Though several models have been available in the literature,
it is noted that there is still a need to enhance the fusion per-
formance of the WSN. At the same time, there is a requirement
to achieve minimum energy consumption, signaling overhead,
average delay with maximum throughput. Sample data of WSN
has grown in a rapid way owing to the existence of massive
number of sensor nodes, a centralized data mining solution in
a fusion center has come across the issue of minimizing the
load of the fusion center as well as reducing the overall energy
utilization. In this view, this paper presents a DL based distributed
data mining (DDM) model with LSTM to achieve energy effi-
ciency and optimal load balancing at the fusion center of WSN.
The presented DMM includes a recurrent neural network with
LSTM (RNN-LSTM) model which divides the network into various
layers and place them into the sensor nodes. Using the RNN-
LSTM model, the overhead of the fusion center in WSN is greatly
reduced. At the same time, the amount of energy needed to trans-
mit data by RNN-LSTM model is considerably lower than energy
needed to transmit actual data. The presented RNN-LSTM model
undergoes a wide set of experimentation under varying number
of hidden layer nodes and signaling intervals. The experimental
outcome stated that the RNN-LSTM reduces the energy consump-
tion, signaling overhead, average delay and maximizes the overall
throughput compared to other methods. The advantages of the
paper contribution are listed here.

(a) No requirement of labeling quantity of training data in a
manual process in case of various domains, where it is
completely done automatically.

(b) Internal representations are integrated with alternate DM
technique and enhanced the models to attain optimal re-
sults.

(c) The dimensionality of RNN-LSTM helps to minimize the
data transmission byWSN as well as to conserve the energy
of WSN.

(d) The distributed estimation decreases the overload in fusion
center that leads to several benefits like less hardware
requirement and delay.

The upcoming portions of the paper are organized as follows.
Section 2 elaborates the RNN-LSTM model. Section 3 validates
the experimental validation of the proposed model and Section 4
concludes the paper.
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Fig. 1. Principle of distributed DM.

2. Proposed method

The presented RNN-LSTM for DDM is intended to achieve
energy efficiency and load balancing at the fusion center of the
WSN. The presented DMM includes a recurrent neural network
with LSTM (RNN-LSTM) model which divides the network into
various layers and place them into the sensor nodes.

2.1. Basic principle

The basic principle involved in the RNN-LSTM model is given
here. Assume a WSN existed with a fusion center which is divided
into 3 stages (Fig. 1(a)) and three-layer RNN-LSTM (Fig. 1(b)). It
is pointed that the topology of WSN as well as structure of RNN-
LSTM is same in hierarchy. There is a possible solution which
helps to divide the RNN-LSTM into layers and allocate various
levels of WSN. Fig. 1(c) provides an instance of dividing RNN-
LSTM into 2 portions as well as putting in fusion center. It is
considered that a WSN has been segmented bym levels, and RNN-
LSTM contains n layers. While dividing n layers to k parts (k≤m,
n), every portion is implemented by estimating the calculating
units in related level of hu in WSN, and RNN-LSTM could be
demonstrated in the upcoming sections.

Step 1: Suppose u = 1. Sensors samples the actual data, where
it is computed in calculating units from the level hi using initial
portion of RNN-LSTM and forwards the simulation outcome to
calculating units in level hu + 1, and u = u + 1.

Step 2: Estimate the input obtained from calculating units of
previous level, if u ≥ k, go to Step 4.

Step 3: When hu ≥ m, go to Step 5. Otherwise, go to Step 2
and transmit the result to calculating units of level hu + 1, and
u = u + 1.

Step 4: Forward the data to fusion center.
Step 5: DM process is completed.

2.2. RNN-LSTM

The LSTMmethod is applied to resolve the issue of diminishing
gradients of RNN. It looks like a standard RNN along with hidden
layer, where every normal node of hidden layer could be substi-
tuted using a memory cell as shown in Fig. 2. All memory cells
are composed with a self-connected recurrent edge by assuring
the gradient which is capable of passing over several times with
no discharge. In order to determine some references of memory
cell as well as not an ordinary node, subscript c has been applied.
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Fig. 2. Memory cell of LSTM.

The term ‘‘LSTM’’ emerges from upcoming instinct. A simple
recurrent NN has long-term memory in terms of weights. It
is altered gradually at the time of training, encoding general
knowledge regarding a data. It is also composed with short-term
memory with respect to develop an ephemeral functions, that
passes from every single node to consecutive nodes. Here, LSTM
technique denotes the middle type of memory cell. A memory cell
is considered to be a composite element, developed from ordinary
nodes in a particular connectivity procedure, by including the
multiplicative nodes, which is denoted in images by letter Π .
Every units of LSTM cell undergoes enumeration and defined as
given below. For instance, s denotes a vector with value of sc at
every memory cell c from a layer. If subscript c is employed, then
it helps to index a single memory cell.

• Input node: This unit, labeled gc , is said to be anode which
obtains the activation from a standard way of input layer
l(z) in a present duration as well as from hidden layer at
past time step h(z−1). Generally, the added weight input is
an tanh activation function, though it is derived from LSTM
paper, and activation function is denoted by a sigmoid.

• Input gate: The gates are assumed to be unique feature of
LSTM model. A gate resembles a sigmoidal of input node,
which grabs the activation from present data point l(z) and
from hidden layer at past time step. It is termed as gate
due to the multiplied value of alternate node. If the value
is assigned to be zero, then it is named as a gate, where
the flow of alternate node is cut off. When it is declared as
one, every flow is passed. Additionally, value of input gate
uc increases the value of input node.

• Internal state: The kernel points of all memory cells are
anode sc including linear activation that is named from
general paper as internal state of a cell. The interior state
sc is comprised with self-connected recurrent edge along
with permanent unit weight. Due to the edge of adjacent
time steps with similar weight, error flows over the time
steps in absence of exploding. It is named as constant error
carousel. For vector function, update for internal state is
s(z) = g (z) ⊙ u(z) + s(z−1) where ⊙ indicates point-wise
multiplication process.

• Forget gate: The gates fc has been introduced. It offers a
model to learn the context of the interior state. It is more ap-
plicable in frequently running networks. Using forget gates,
the function to estimate the internal state in a forward pass
is

s(z) = g (z)
⊙ u(z)

+ f (z)
⊙ s(z−1) (1)

• Output gate: Value vc is generated by memory cell which is
considered to be the measure of internal state sc increased
by value of resultant gate oc . In addition, it is customary that
internal state is implemented by tanh activation function,
since it provides simulation outcome of every cell with
similar dynamic range as gradual tanh hidden unit. But, in
alternate NN research, resolved linear units are comprised
with higher dynamic range which is simple to train. Hence,
it is plausible for nonlinear function where the internal state
may be removed.

Generally, the input node is labeled g . We remain to this
convention however note that it can be confusing as g does not
accept gate. In the original paper, the gates are known yin and
yout but this is confusing as y usually withstand outcome in the
ML literature. Seeking comprehensibility, we split through this
convention and utilize u, f , and o to denote to input, forget and
outcome gates correspondingly.

While the LSTM was initiated, many differences have been
presented. Forget gates, explained exceeding, were presented in
2000 and were not part of the original LSTM proposed. But, they
have confirmed as efficient and are standard in most present
executions. The peephole relations that pass from the internal
state straight to the input and outcome gates of that similar node
lacking primary containing to be adapted with the outcome gate.
They details that these connections enhance action on duration
roles where the network should learn to measure precise inter-
vals among measures. The intuition of the peephole connected
is captured with subsequent instance. Assume a network that
should learn to calculate objects and emit some needed outcome
if n an object has been seen. The network may discover to allow
various suitable total of activation into the internal state behind
every object is seen. These activations are captured into internal
state sc with constant error carousel, and are increased iteratively
every time other object is seen. If nth object is seen, the network
requires identify to let out content from the internal state in order
that it is involve the outcome. For achieve this, the outcome gates
oc have to know the satisfied of the internal state sc . So sc must
be an input to oc . The calculation in the LSTM form is based on
memory cells and is set properly. The subsequent computations
are executed at every time step. These equations provide the
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entire technique to recent LSTM with forget gates:

g (z)
= ϕ(W gll(z) + W ghh(z−1)

+ bg )

u(z)
= σ (W ull(t) + W uhh(z−1)

+ bu)

f (z)
= σ

(
W fll(t) + W fhh(z−1)

+ bf
)

o(z)
= σ (W oll(t) + W ohh(z−1)

+ bo)

s(z) = g (z)
⊙ u(u)

+ s(z−1)
⊙ f (t)

h(z)
= φ

(
s(z)

)
⊙ o(t).

(2)

The value of the hidden layer of the LSTM at time z is the
vector h(z), as h(z−1) is the values outcome with every memory cell
in the hidden layer at preceding time. Consider these equations
contain the forget gate, although not peephole connections. The
computations to easier LSTM without forget gates are achieved
with setting f (z) = 1 to every z. We utilize the tanh function ϕ to
input node g subsequent the modern design. But, the LSTM paper,
the activation function to g is the sigmoid σ .

Spontaneously, with respect to the forward pass, the LSTM is
learned if let to activation into the internal state. Provided that
input gate obtains value 0, no activation is included. Likewise,
the outcome gate learns when to let the value out. If both gates
are closed, the activation is captured in the memory cell, neither
upward nor shrinking, nor disturbing the outcome at in-between
time steps. With respect to the backwards pass, the constant error
carousel allows the gradient to propagate back across several
time steps, neither exploding norvanishing. In this sense, the
gates are learning if let to fault in, and when to let it out. In
practice, the LSTM has exposed a higher capability to learn long-
range dependencies as related to easy RNNs. Thus, the popular
of modern application papers enclosed in this review utilize the
LSTM method.

One repeated point of confusion is the approach in that multi-
ple memory cells are utilized together to contain the hidden layer
of a working NN. The outcome from every memory cell flows in
the following time step to the input node with every gates of all
memory cells. It is ordinary to contain several layers of memory
cells. Usually, in these designs of every layer gets input from the
layer under at the similar time step and from the similar layer in
the preceding time step.

2.3. Training

2.3.1. Training the distributed RNN-LSTM
By executing RNN-LSTM to DM, it is required to train the RNN-

LSTM in the fusion center at primary stage. The training data
are instance from every WSN sensors, and the trained RNN-LSTM
parameters are sent to the RNN-LSTM layers allocated in various
computing units. While a WSN is provided with a mass of trained
data, this data also exhaust many network’s power. In fact, a sen-
sor’s instances data do not alter in a short time. So, select one of
them to train the RNN-LSTM. The issue is that we do not identify
if data modify. An arbitrary data chosen technique have been
verified helpful in solving this problem and a digital identification
explore illustrated that a arbitrary chosen of 10% training is obtain
better outcome, Thus, the arbitrary chosen technique is efficiently
decrease set of redundant data to be broadcasted.

Afterwards, we provide the training process through the arbi-
trary chosen technique as pursues.

1. The fusion center arbitrarily creates a sensor’s ID and trans-
mits a request to the sensor.

2. The chosen senor obtains the request and transmits the
instance data.

3. Fusion center gets the training data from the chosen senor
and transmits the data to the GLT technique.

4. The GLT technique ensures if the training outcome obtains
the stop state. When YES, go to step 5. Else, go to Step 1.

5. The fusion center transmits all part of the RNN-LSTM ar-
rangement data to the equivalent computing unit.

The distribution hierarchy of RNN-LSTM is based on its func-
tion. But, some distribution hierarchy must be controlled with
power utilization. The principle of planning the distribution hi-
erarchy depends on the trade-off among computing and broad-
casting power utilization. Suppose that there is a computing unit,
and it performs c trainings to end DM role. All training utilizes Ei
power. Also, the computing unit utilizes Et power sending a bit
to the destination node without some affect and decrease. With
every affect disturbing and attenuation effects lead to further
power utilization of Eo. Next, it is declared that a computing unit
is allowed the RNN-LSTM part when the subsequent formula is
fulfilled:

cEi ≤ (bi − bo) (Et + Eo) , (3)

where bi is the size of computing unit’s input in bit and bo is the
size of computing unit’s outcome in bit, bi ≥ b. If Eo is set to 0,
next we contain

c
bi − bo

≤
Et
Ei

. (4)

Noticeably, when Eq. (4) is fulfilled, Eq. (3) should be fulfilled
too. In fact, Eq. (4) is a traditional constraint. It resolves the upper
limit computing role that computing unit is obtain.

3. Experimental validation

For validating the results of the RNN-LSTM model for DDM in
WSN, a set of experiments were carried out in MATLAB R2014a.
Here, the results are validated under varying number of hidden
layer nodes and signaling interval. The number of hidden layer
nodes ranges from 5 to 40 and the signaling interval lies between
240–260. The set of measures used to analyze the performance
are signaling overhead, average throughput and average delay. A
comparative analysis is also made with OSPF and DNN models.

3.1. Results analysis under varying number of hidden layer nodes

In this section, the performance of the RNN-LSTM model has
been validated under varying node count in hidden layers in
terms of are signaling overhead, average throughput and average
delay.

Fig. 3 investigates the results attained by the RNN-LSTM and
other models in terms of signaling overhead. The figure portrayed
that RNN-LSTMmodel shows effective outcome by achieving least
signaling overhead. At the same time, the DNN model shows high
signaling overhead compared to RNN-LSTM whereas the OSPF
model exhibits least performance by offering maximum signaling
overhead over the compared methods.

For instance, under the existence of 5 hidden layer nodes, it
can be shown that the RNN-LSTM achieves a minimum signaling
overhead of 28 whereas the OSPF and DNN models shows maxi-
mum signaling overhead of 120 and 34 respectively. For instance,
under the existence of 20 hidden layer nodes, it can be shown
that the RNN-LSTM achieves a minimum signaling overhead of 28
whereas the OSPF and DNN models shows maximum signaling
overhead of 113 and 34 respectively. For instance, under the
existence of 30 hidden layer nodes, it can be shown that the RNN-
LSTM achieves a minimum signaling overhead of 29 whereas
the OSPF and DNN models shows maximum signaling overhead
of 107 and 35 respectively. For instance, under the existence
of 40 hidden layer nodes, it can be shown that the RNN-LSTM
achieves a minimum signaling overhead of 30 whereas the OSPF



6 S.N. Mohanty, E.L. Lydia, M. Elhoseny et al. / Physical Communication 40 (2020) 101097

Fig. 3. Signaling overhead interms of hidden layer.

Fig. 4. Average throughput interms of hidden layer.

and DNN models shows maximum signaling overhead of 102 and
35 respectively.

Fig. 4 shows the outcome of the RNN-LSTM and other mod-
els interms of average throughput. The figure depicted that the
RNN-LSTM model offers superior results by offering maximum
throughput. At the same time, the DNN model shows moderate
average throughput compared to RNN-LSTM whereas the OSPF
model exhibits worse performance by offering least throughput
over the compared methods.

For instance, under the existence of 10 hidden layer nodes, it
can be shown that the RNN-LSTM achieves a maximum through-
put of 1.39 Gbps whereas the OSPF and DNN models shows
slightly lower throughput of 1.35 Gbps respectively. For instance,
under the existence of 20 hidden layer nodes, it can be shown
that the RNN-LSTM achieves a maximum throughput of 1.68 Gbps
whereas the OSPF and DNNmodels shows slightly lower through-
put of 1.52 Gbps and 1.6 Gbps respectively. For instance, under
the existence of 30 hidden layer nodes, it can be shown that
the RNN-LSTM achieves a maximum throughput of 1.9 Gbps
whereas the OSPF and DNNmodels shows slightly lower through-
put of 1.6 Gbps and 1.8 Gbps respectively. For instance, under
the existence of 40 hidden layer nodes, it can be shown that the
RNN-LSTM achieves a maximum throughput of 2.1 Gbps whereas

Fig. 5. Average delay interms of hidden layer.

the OSPF and DNN models shows slightly lower throughput of
1.7 Gbps and 1.92 Gbps respectively.

Fig. 5 exhibits the results attained by the RNN-LSTM and other
models interms of average delay. The figure portrayed that RNN-
LSTM model shows effective outcome by achieving least average
delay. At the same time, the DNN model shows high average
delay compared to RNN-LSTM whereas the OSPF model exhibits
least performance by offering maximum average delay over the
compared methods.

For instance, under the existence of 5 hidden layer nodes, it
can be shown that the RNN-LSTM achieves a minimum average
delay of 220 ms whereas the OSPF and DNN models shows
average delay of 235 ms respectively. For instance, under the
existence of 20 hidden layer nodes, it can be shown that the RNN-
LSTM achieves a minimum average delay of 222 ms whereas the
OSPF and DNNmodels shows average delay of 242 ms and 236 ms
respectively. For instance, under the existence of 30 hidden layer
nodes, it can be shown that the RNN-LSTM achieves a minimum
average delay of 222 ms whereas the OSPF and DNN models
shows average delay of 570 ms and 236 ms respectively. For
instance, under the existence of 40 hidden layer nodes, it can be
shown that the RNN-LSTM achieves a minimum average delay of
222 ms whereas the OSPF and DNN models shows average delay
of 690 ms and 236 ms respectively.

3.2. Results analysis under varying number of signaling interval

In this section, the outcome of the RNN-LSTM model has been
validated under varying signaling interval interms of signaling
overhead, average throughput and average delay.

Fig. 6 investigates the results attained by the RNN-LSTM and
other models interms of signaling overhead with various signal-
ing intervals. It is shown that the RNN-LSTM model shows ex-
traordinary performance and offered a minimum signaling over-
head under different signaling intervals over the compared meth-
ods.

For instance, under the signaling interval of 260 ms, it can
be shown that the RNN-LSTM achieves a minimum signaling
overhead of 17 whereas the OSPF and DNN models shows maxi-
mum signaling overhead of 120 and 20 respectively. For instance,
under the signaling interval of 250 ms, it can be shown that
the RNN-LSTM achieves a minimum signaling overhead of 18
whereas the OSPF and DNN models shows maximum signaling
overhead of 125 and 30 respectively. For instance, under the
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Fig. 6. Signaling overhead interms of signaling interval.

Fig. 7. Average throughput interms of signaling interval.

signaling interval of 240 ms, it can be shown that the RNN-LSTM
achieves a minimum signaling overhead of 19 whereas the OSPF
and DNN models shows maximum signaling overhead of 130 and
33 respectively.

Fig. 7 shows the outcome of the RNN-LSTM and other models
interms of average throughput under different signaling intervals.
The figure depicted that the RNN-LSTM model offers superior
results by offering maximum throughput under all the signaling
intervals applied.

For instance, under the signaling interval of 260 ms, it can be
shown that the RNN-LSTM achieves a maximum throughput of
1.336 Gbps whereas the OSPF and DNN models shows slightly
lower throughput of 1.334 Gbps and 1.335 Gbps respectively.
For instance, under the signaling interval of 250 ms, it can be
shown that the RNN-LSTM achieves a maximum throughput of
1.3365 Gbps whereas the OSPF and DNN models shows slightly
lower throughput of 1.334 Gbps and 1.334 Gbps respectively.
For instance, under the signaling interval of 240 ms, it can be
shown that the RNN-LSTM achieves a maximum throughput of
1.337 Gbps whereas the OSPF and DNN models shows slightly
lower throughput of 1.321 Gbps and 1.3345 Gbps respectively.

Fig. 8 exhibits the results attained by the RNN-LSTM and other
models interms of average delay under different signaling inter-
vals. The figure portrayed that RNN-LSTM model shows effective

Fig. 8. Average delay interms of signaling intervals.

outcome by achieving least average delay under different signal-
ing intervals. For instance, under the signaling interval of 260 ms,
it can be shown that the RNN-LSTM achieves a minimum average
delay of 180 ms whereas the OSPF and DNN models shows
average delay of 200 ms and 210 ms respectively. For instance,
under the signaling interval of 250 ms, it can be shown that the
RNN-LSTM achieves a minimum average delay of 185 ms whereas
the OSPF and DNN models shows average delay of 220 ms and
225 ms respectively. For instance, under the signaling interval of
240 ms, it can be shown that the RNN-LSTM achieves a minimum
average delay of 190 ms whereas the OSPF and DNN models
shows average delay of 230 ms and 230 ms respectively.

By looking into the above figures, it is evident that the DNN
model shows high signaling overhead compared to RNN-LSTM
whereas the OSPF model exhibits least performance by offering
maximum signaling overhead over the compared methods. At the
same time, the DNN model shows moderate average through-
put compared to RNN-LSTM whereas the OSPF model exhibits
worse performance by offering least throughput over the com-
pared methods. Along with that, it is also observed that the
amount of energy needed to transmit data by RNN-LSTM model
is considerably lower than energy needed to transmit actual
data. The simulation results indicated that the RNN-LSTM reduces
the signaling overhead, average delay and maximizes the overall
throughput compared to other methods.

4. Conclusion

This study has developed a new RNN-LSTM model for DDM in
WSN to achieve energy efficiency and optimal load balancing at
the fusion center of WSN. Using the RNN-LSTM model, the over-
head of the fusion center in WSN is greatly reduced. At the same
time, the energy consumption for processed data transmission by
RNN-LSTM model is considerably lower than the transmission of
actual data. Here, the results are validated under varying number
of hidden layer nodes and signaling interval. The number of
hidden layer nodes ranges from 5 to 40 and the signaling inter-
val lies between 240–260. The set of measures used to analyze
the performance are signaling overhead, average throughput and
average delay. At the same time, the amount of energy needed
to transmit data by RNN-LSTM model is considerably lower than
energy needed to transmit actual data. The simulation results
indicated that the RNN-LSTM reduces the signaling overhead,
average delay and maximizes the overall throughput compared
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to other methods. It is noted that under the signaling interval of
240 ms, it can be shown that the RNN-LSTM achieves a minimum
average delay of 190 ms whereas the OSPF and DNN models
shows average delay of 230 ms and 230 ms respectively. In future,
the performance of the proposed model can be further enhanced
by the use of hyper parameter tuning techniques.
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