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A B S T R A C T   

Internet of Things (IoT) security and reliability rely on the capacity to identify distributed denial-of-service 
(DDoS) assaults in IoT networks. This research presents a comprehensive study on DDoS attack detection 
using the NSL-KDD dataset. The dataset contains a diverse set of network traffic data. This paper proposes two 
approaches, one utilizing Principal Component Analysis (PCA) and another without PCA, to compare their 
performance. Robust scaling and encoding techniques are applied as preprocessing steps. The experiment out-
comes demonstrate a noteworthy improvement in the accuracy of DDoS attack detection in IoT devices by 
integrating PCA and Robust Scaler. Notably, the Random Forest and KNN classifiers demonstrate exceptional 
performance with an accuracy of 99.87 % and 99.14 %, respectively, while Naïve Bayes shows a lower accuracy 
of 87.14 %. The findings from this experiment contribute valuable insights into enhancing the security of IoT 
devices against DDoS attacks. The proposed approach showcases the importance of appropriate preprocessing 
techniques in achieving robust intrusion detection systems for IoT environments.   

1. Introduction 

Any online system is vulnerable to distributed denial-of-service 
(DDoS) assaults, which are common and can cause significant disrup-
tion. The need to make sure that IoT devices are secure and can with-
stand cyber threats is growing as their use spreads across different 
industries [1,2,3,26]. Due to their heterogeneous transmission tech-
nologies, low processing capabilities, hardware restrictions, and lack of 
built-in security, IoT devices are primarily susceptible to threats. Botnets 
and the majority of cyberattacks nowadays are reportedly DDoS attacks, 
according to recent reports. Over the last decade, both the frequency and 
severity of these attacks have skyrocketed [4,6,27]. By sending a deluge 
of traffic to the victim’s network, these assaults cripple it and prevent it 
from serving genuine customers [5,28]. Consequently, it is critical for 
network administrators and security personnel to be able to detect DDoS 
attacks. Important services, private information, and money can all be 
lost due to these kinds of attacks. The potential impact is magnified by 

the networked nature of IoT devices. Once compromised, these devices 
can be used to conduct large-scale attacks. For IoT installations to be 
secure, reliable, and available, it is critical to detect these assaults in IoT 
devices. The NSL-KDD dataset allows for the evaluation of several ma-
chine learning methods in both normal and attack settings [7,29]. 

Machine learning techniques have been useful for detecting distrib-
uted denial of service attacks (DDoS) due to their ability to sift through 
mountains of network traffic data in search of patterns linked to mali-
cious behavior [8]. Machine learning techniques are able to identify 
distributed denial of service (DDoS) attacks by predicting future 
network traffic patterns. Internet of Things (IoT) networks often employ 
algorithms like K-Nearest Neighbor, Decision Tree, and neural networks 
to identify distributed denial of service (DDoS) assaults. Using labeled 
datasets to train machine learning models allows for real-time detection 
and classification of anomalous traffic patterns that may indicate DDoS 
attacks. In recent years, machine learning methods have become more 
popular and effective in detecting and preventing these types of attacks 
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[9]. Botnet and distributed denial of service (DDoS) assaults can target 
Internet of Things (IoT) devices, and once compromised, these devices 
can launch a variety of DDoS attacks, according to recent research [10]. 

Addressing the increasing security issues in IoT devices, particularly 
in detecting DDoS attacks, is the driving force behind this work. The 
functioning, availability, and general security of these devices are 
jeopardized by their susceptibility to distributed denial of service 
(DDoS) assaults, which are becoming more common as IoT installations 
spread across many domains. Consequently, creating efficient DDoS 
detection systems that are customized for IoT environments is an urgent 
necessity. The objective of this work is to examine and contrast various 
machine learning algorithms for detecting distributed denial of service 
attacks in Internet of Things devices. The main objective is to compare 
and contrast different machine learning methods for identifying mali-
cious DDoS traffic from legitimate Internet of Things (IoT) traffic. We 
intend to evaluate various ML algorithms’ accuracy, precision, recall, 
and F1 score using the NSL-KDD dataset, which contains realistic data on 
network traffic from IoT devices. Through analyzing their performance 
data, we determine which algorithms are the most effective in achieving 
precise and dependable detection. 

2. Related work 

DDoS assaults have been a major concern for Internet security for a 
long time. To address this issue, researchers strengthened network 
behavior to make it more resistant to these types of attacks. A growing 
number of experts are relying on different Machine Learning algorithms 
to identify DDoS attacks. 

In their proposal, Hussain et al. trained two ResNet-18 models, which 
are considered state-of-the-art deep learning algorithms, to use in tan-
dem with machine learning. The goal of training two ResNet-18 models 
was to recognize distributed denial of service (DDoS) assaults and 
scanning activity during the early stages of an attack in order to detect 
and prevent botnet attacks on the internet of things (IoT) [11]. With a 
91.01 % success rate, their two-pronged approach can identify and 
counter 60 distinct DDoS attempts and 33 distinct scanning assaults. 
Chavan et al. proposed a machine learning-based method for botnet 
DDoS attack identification and prevention [12]. New Botnet prevention 
functionality scans URLs for dangerous content and prevents visitors 
from being directed to such sites. The accuracy of Logistic Regression, 
support vector machine (SVM), KNN, and decision tree was 90.40 %, 
90.36 %, 89.15 %, and 82.28 %, respectively, when tested with the 
detection process using four separate classifiers. In their work, Chen 
et al. [13] developed a method to protect 5G-enabled IoT from distrib-
uted denial-of-service attacks in real time. For 5G core network packet- 
level identification, this system compiles data from several sources. In 
typical attack circumstances, this method has the ability to guarantee a 
detection rate of 99 % while concurrently reducing the rate of packet 
inspection to less than 37 %. 

In response to IEEE P2668, Liu et al. [14] presented a DRL-MLDS, a 
multi-layer IoT distributed denial-of-service defense system. They were 
able to get their model to defend against a single protocol attack with a 
97 % success rate and attack that protocol with a 96 % success rate. The 
proposed model, DRL-MLDS, has an application index of 3.2; with 
reward metrics that are in line with the IEEE P2668 standard, it can be 
raised to 4.4. In their study on collaborative IoT packet sampling in 
response to a DDoS attack, Chen et al. [15] used a Stackelberg game 
model. They found a lower limit for the packet sampling needed to fight 
against DDoS attacks by doing an equilibrium analysis. Online and 
proactive protection against DDoS traffic can be facilitated by their 
suggested method of packet sampling. The model not only reduces the 
sampling rate by over 70 %, but it also shows remarkable resilience 
when faced with changes to the boundary conditions. To identify 
distributed denial of service (DDoS) assaults on 5G networks, Hussain 
et al. [16] suggested a deep learning-based approach. They proposed a 
unified system that can identify distributed denial of service (DDoS) 

assaults initiated by a botnet of compromised devices in a timely 
manner. Authentic network data and deep convolutional neural net-
works (CNNs) are the building blocks of this approach. For silent calls, 
the CNN model used the DRC model, and it achieved a detection accu-
racy of over 91 % for both normal and under-attack cells. Furthermore, 
when applied to a more intricate blended strategy, the framework 
attained an accuracy of over 97 %. 

By considering the inputs from a northbound SDN application, 
Bousalem et al. developed an OpenAirInterface-based prototype that 
allows for the formation of network slices on demand and the dynamic 
management of physical resources based on user behavior [17]. 
Demonstration of a deep learning prototype for 5G and beyond mobile 
network threat detection and mitigation. By keeping the false positive 
rate below 4 %, their model is able to get an accuracy of 97 %. One 
approach proposed by Alghazzawi et al. [18] is to use benchmark data to 
train a hybrid deep learning (DL) model, such as a CNN with BiLSTM 
(bidirectional long/short-term memory). Bidirectional long/short-term 
memory (BiLSTM) was incorporated into the CNN model. The features 
that were deemed most pertinent to the issue were selected after they 
were ranked and their scores were compared to those in the given 
dataset. Through training, testing, and confirmation on the CIC- 
DDoS2019 data set, the experimental results demonstrate that the sug-
gested CNN-BI-LSTM achieved an accuracy of up to 94.52 %. To detect 
intrusions using semi-supervised learning, Duan et al. suggested a 
DLGNN (dynamic line graph neural network) [19]. The traffic flow via a 
network is shown by this paradigm using a set of spatiotemporal graphs. 
The use of a dynamic GNN (DGNN) allows us to record the changing 
nature of IP pair communication and to derive location data from each 
snapshot. This approach can detect abnormalities with a high accuracy 
(98.15–99.8 % utilizing a lesser number of tagged samples), according to 
experiments on six new datasets. The average DDoS detection accuracy 
across all six datasets is 95.32 %, demonstrating that we have achieved 
state-of-the-art levels of multiclass performance. Problems with harmful 
wireless IoT causing distributed denial of service attacks on Internet of 
Things servers were addressed by Nagarathna and Mercy [20]. In order 
to protect IoT servers from distributed denial of service (DDoS) assaults, 
their security solution incorporates cloud computing and the software- 
defined networking (SDN) architecture. A semi-supervised machine 
learning approach, a topology emulator of the network, and a testbed for 
LEDEM evaluation make up their new learning-driven detection miti-
gation (LEDEM) solution. A 96.2 % improvement in DDoS attack 
detection accuracy was found by comparing the findings obtained by 
LEDEM to those of state-of-the-art systems. 

In their evolutionary support vector machine model, Sahoo et al. 
employed kernel principal component analysis (KPCA) to reduce feature 
vector dimensions. Contrarily, GA improves the model’s accuracy by 
optimizing several SVM parameters [21]. To lessen the noise caused by 
the feature gap, they have employed N-RBF. With an accuracy rating of 
98.90 %, the model surpasses the typical support vector machine. To 
detect and counteract LR-DDoS attacks, Perez-Diaz proposed a flexible 
security architecture based on SDN [22]. Utilizing the CICDoS dataset, 
they developed and proved that the suggested method successfully 
detected and prevented numerous types of low-resource distributed 
denial-of-service attacks (LR-DDoS). The proposed intrusion prevention 
system can thwart any assault that the intrusion detection system has 
already detected, and its detection rate is 95 %. In order to identify low- 
rate DDoS attacks, Zhijun et al. published their findings [23]. This study 
investigates the potential vulnerabilities of SDN’s data layer to low-rate 
DDoS attacks. In addition to suggesting a defensive strategy based on the 
dynamic deletion of flow rules, the success rate of forwarding ordinary 
packets was 97.85 %. The detection rate of LR-DDoS against the SDN 
data layer is 95.60 % when using this method. 

Using data about the asymmetry and rate characteristics of the flows, 
this program was able to identify potentially harmful traffic [24]. Tan 
et al. suggested a hybrid machine learning approach based on k-means 
and KNN to exploit these features and detect suspicious flows signaled 
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by the detection trigger mechanism. Afterwards, in response to attacks, 
the player will activate the character’s defenses. The authors of this 
study proposed a new paradigm for control plane and data plane 
cooperative detection techniques. With any luck, this framework will be 
able to successfully block DDoS attacks on SDN and increase detection 
accuracy to 98.85 %. Two feature selection approaches, IG and RF, were 
proposed by Sayed et al. [25] for the purpose of finding relevant char-
acteristics. The three flow-based benchmark datasets used to assess the 
suggested feature selection strategy are SDN, CICIDS2017, and 
CICIDS2018. Using the same set of features, they have also demon-
strated a model based on deep learning. The results demonstrate that the 
proposed method, when combined with certain feature techniques, can 
effectively decrease model complexity while maintaining accuracy. This 
model was created using the precise features that were chosen. 

3. Proposed model 

Several important steps are included in the created model, as illus-
trated in Fig. 1. It starts with the input dataset and then moves on to 
exploratory data analysis (EDA) to discover more about the data. To deal 
with missing data, duplication, and features that have been scaled or 
normalized, preprocessing procedures are used. We use principal 
component analysis (PCA) feature selection to find the most useful 
characteristics. The preprocessed data is used to train multiple machine 
learning algorithms that can accurately classify DDoS attacks. We 
measure the models’ performance with F1-score, recall, accuracy, and 
precision. The goal of this all-encompassing strategy was to improve the 
DDoS attack detection model for IoT devices by using a suitable dataset, 
efficient preprocessing, feature selection, different classifiers, and 
rigorous model evaluation. 

3.1. Data preprocessing 

Preprocessing the NSL-KDD dataset ensured unbiased classifiers and 
prepared the data for model training and evaluation, making it ideal for 
DDoS attack detection in IoT devices. Due to the dataset’s prior exclu-
sion of duplicate entries, there is no longer any bias towards more 
frequent records in the training set. The dataset was preprocessed with 
the help of scikit-learn’s RobustScaler. The numerical features were 
normalized and outliers were efficiently handled using this technique. 
To apply robust scaling to the numerical properties of the dataframe, it 
makes use of the ’RobustScaler’ from scikit-learn. A dataframe call-
ed’std_df’ is returned after being scaled. An input dataframe (’data-
frame’) is passed through a preprocessing function that applies different 
preparation operations. It begins by removing the ’cat_cols’ category 
columns from the dataframe in order to focus on the ’df_num’ numerical 
characteristics. The numerical feature column names are saved in 
’num_cols.’ Next, we scale the numerical features of ’df_num’ using the 
’Scaling’ function. Then, we assign the scaled dataframe to’scaled_df.’ 
We remove the mounted numerical columns from the ’dataframe,’ and 
then we add back the original numerical columns. ’Outcome,’ the target 
variable, is encoded as a binary number, with 0 representing normal 
traffic and 1 representing attacks. The ’protocol_type,’’service,’ and 
’flag’ categorical columns are expanded into binary columns repre-
senting the different categories using ’pd. get_dummies.’ This process is 
known as one-hot encoding. A dataframe that has been preprocessed is 
returned. The training dataset, ’data_train,’ is fed into the ’preprocess’ 
function to produce the preprocessed dataframe,’scaled_train.’ By 
removing the ’outcome’ and ’level’ columns from’scaled_train,’ we can 

extract the features (’x’) and assign the target variable (’y’) to the 
’outcome’ column. ’Scaling’ takes a numerical data frame (’df_num’) 
and a list of column names (’cols’) as inputs. The dataset was cleaned, 
scaled, and encoded suitably throughout these pretreatment processes to 
ensure reliable DDoS attack detection in IoT devices. 

3.2. Feature selection 

By reducing the number of dimensions in high-dimensional data, 
principal component analysis (PCA) becomes an essential statistical tool 
for feature selection and dimensionality reduction. In order to extract 
the most important features from the dataset, a dimensionality reduc-
tion method called Principal Component Analysis (PCA) was employed. 
To reduce the dataset’s dimensionality, the ’PCA’ class from scikit-learn 
was used. By using the Principal Component Analysis (PCA) algorithm 
with n_components = 20 on the features (’x’), we can deduce that there 
will be 20 principal components in the reduced feature space. To pro-
duce the reduced feature representation (’x_reduced’), the ’PCA’ object 
is fitted to ’x’ using ’pca.fit’ and the features are modified using ’pca. 
transform’. Principal component analysis (PCA) enhances the detection 
capabilities for distributed denial of service (DDoS) assaults in internet 
of things (IoT) networks by lowering the number of characteristics from 
42 to 20. This allows for more effective analysis while also reducing 
processing cost. By offering a practical method for improving the iden-
tification and mitigation of DDoS attacks, our work helps to advance the 
area of Internet of Things security, which in turn protects IoT ecosystems 
and guarantees the dependability and authenticity of linked devices. 

3.3. ML classifiers 

We have chosen six supervised learning classifiers—Random Forest, 
KNN, Decision Tree, SVM, Logistic Regression, and Naive Bayes—to 
create and train our models. Because of its effectiveness in detecting 
DDoS attacks, Random Forest was selected because of its scalability, 
robustness, and capacity to handle high-dimensional data. The 
simplicity and ability of KNN to capture local patterns in the data led to 
its employment in attack detection. The interpretability and trans-
parency of Decision Tree’s rules for attack identification led to their 
utilization. Because of their capacity to generate ideal hyperplanes, 
which facilitate class separation, Support Vector Machines (linear) were 
chosen. To evaluate the likelihood of an attack, the probabilistic model 
of choice was Logistic Regression. Finally, Naive Bayes was used since it 
is good at recognizing assaults with certain traits and it assumes that 
features are independent. To provide a varied range of methods for 
better security in IoT environments, these classifiers were selected based 
on their individual capabilities and their capacity to detect distributed 
denial of service (DDoS) attacks in Internet of Things (IoT) devices. 

4. Dataset description and analysis 

Building and testing machine learning models was based on the NSL- 
KDD dataset, which was created for the express purpose of detecting 
distributed denial of service attacks in Internet of Things devices (https 
://www.unb.ca/cic/datasets/nsl.html) [30]. There are a total of 
125,973 packets and 22 different kinds of attacks recorded in it. There 
are labels associated with 42 of its features. You can tell the package’s 
irregularity level (attack or not) only by looking at the label. In order to 
aid in the creation and assessment of intrusion detection systems (IDSs) 
for network security, this dataset is designed to identify different kinds 

Fig. 1. Proposed Machine Learning Model.  
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of attacks, such as distributed denial of service (DDoS) attacks, in 
Internet of Things (IoT) settings. Dataset characteristics, distributions, 
and interrelationships were all investigated as part of the EDA proced-
ure. A review of the dataset was initiated by calculating descriptive 
statistics, which included quartiles, standard deviation, median, and 
mean. This was useful in spotting any data anomalies or outliers. 

Fig. 2 displays the dataset’s service distribution; each service is 
represented by a bar, and the y-axis shows the quantity or percentage of 
services where “http” requests are high relative to “private,” which ac-
counts for around half of “http” requests. Between zero and ten percent 
of the total data falls within the remaining requests. As seen in Fig. 3, 
the’service’ and ’attack_type’ columns in the dataset are related, illus-
trating how various attack types are dependent on various service kinds. 
The different colors within each bar indicate the many types of attacks, 

and each bar symbolizes a different service. Each service type’s pro-
portion of attacks is shown on the y-axis. The correlation between 
different kinds of protocols and attacks is graphically shown in Fig. 4. A 
’protocol_type’ variable is shown on the x-axis, with ’attack’ type 
determining the bar colors. Graph analysis shows that different types of 
attacks have different impacts on different protocols; for example, 
“ICMP” is impacted by probe and DoS attacks more than “TCP” while 
“udp” is impacted by probe attacks more than DoS attacks. 

It should be mentioned that the NSL-KDD dataset includes both nu-
merical and categorical variables. It can be more difficult to understand 
the relationship between categorical variables and the correlation co-
efficients that are normally computed for numerical variables. Conse-
quently, when estimating the relationship between variables based on 
categorical features, alternative metrics like Cramer’s V or the 

Fig. 2. Histogram of Services.  

Fig. 3. Different service type dependencies on attack type.  
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correlation ratio can be employed. For feature selection, finding highly 
correlated variables, or understanding the underlying patterns in the 
data, the resultant correlation matrix as shown in Fig. 5 would give a 
numerical representation of the relationships between the numerical 
features in the dataset. 

5. Result and discussion 

The experiment was conducted on a Dell Inspiron 5567 laptop with 

an Intel Core i5 7th generation processor and 16 GB of DDR4 RAM 
running on the Windows 11 Pro operating system. The research utilized 
Jupyter Notebook, an interactive coding environment, and the 
Anaconda distribution, providing a comprehensive Python package 
suite for data science and machine learning. 

Initially, the dataset was preprocessed using a robust scaler as dis-
cussed in section 3.1, and then the ’PCA’ function was fitted to ’x’ using 
’pca.fit’, and the features were transformed using ’pca.transform’ to 
obtain the reduced feature representation (’x_reduced’) resulting the 
reduction of original 42 features to a more manageable set of 20 features 
as discussed in section 3.2. The original features (’x’) and reduced fea-
tures (’x_reduced’) are split into training and testing sets using ’train_-
test_split.’ The target variable (y) is also divided accordingly. The 
training set comprises 80 % of the data, while the testing set contains 20 
%. The same split is applied to the reduced feature representation 
(’x_train_reduced,’ ’x_test_reduced’) and the target variable (’y_train_-
reduced,’ ’y_test_reduced’). The classifiers were trained on the following 
preprocessed datasets to evaluate their performance on the original and 
reduced features.  

a) x_train and y_train: The training set consisting of original features 
(‘x_train’) and the corresponding target variable (‘y_train’).  

b) x_test and y_test: The testing set consisting of original features 
(‘x_test’) and the corresponding target variable (‘y_test’). 

Fig. 4. Different Protocol dependencies on attack type.  

Fig. 5. Correlation Analysis of NSL-KDD Dataset.  
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c) x_train_reduced and y_train_reduced: The training set with reduced 
features obtained from PCA (’x_train_reduced’) and the correspond-
ing target variable (’y_train_reduced’). 

d) x_test_reduced and y_test_reduced: The testing set with reduced fea-
tures obtained from PCA (’x_test_reduced’) and the corresponding 
target variable (’y_test_reduced’). 

Each classifier was trained using the training set and then evaluated 
using the respective testing set to assess their accuracy, precision, recall, 
and F1 score in detecting DDoS attacks. In detecting a DDoS attack in IoT 
devices, a confusion matrix can be used to evaluate the performance of a 
machine learning-based detection system. Fig. 6 and Fig. 7 show the 
confusion matrix of all the classifiers without using PCA and using PCA, 
respectively. The confusion matrix has two classes: “attack” and 

“normal” traffic for each of the classifiers used, where True Positive (TP) 
represents the number of instances correctly classified as “attack” traffic, 
False Positive (FP) - Represents the number of instances incorrectly 
classified as “attack” traffic, but are regular traffic, True Negative (TN) - 
Represents the number of instances correctly classified as “normal” 
traffic, False Negative (FN) - represents the number of instances incor-
rectly classified as “normal” traffic, but are an attack. 

Further, we have calculated precision, recall, f1-score, accuracy, and 
kappa coefficient from the confusion matrix of all the classifiers with and 
without PCA. These parameters are defined as: 

Accuracy: It is the number of times that attack flows were correctly 
labeled as “attack flows” (i.e., TP) and normal traffic flows were labeled 
as “normal flows” (i.e., TN). Mathematically, it can be calculated as 

Fig. 6. Confusion matrix without using PCA ((a) Random Forest, (b) KNN, (c) Decision Tree (d) Naïve Baye, (e) SVM, (f) Logistic Regression).  
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Accuracy = (TP+TN)/(TP+ FP+TN+ FN) (1) 

Precision: It says how many of the predicted attack flows were right. 
Mathematically, it can be calculated as 

Precision = TP/(TP+FP) (2) 

Recall - It shows how well the system can find the attack when it 
happens. Mathematically, it can be calculated as 

Recall = (TP)/(TP + FN) (3) 

F1-Score - It is the weighted harmonic mean of accuracy and recall. 
Mathematically, it can be calculated as 

f1 − score = 2*(precision * recall)/(precision + recall) (4) 

The kappa coefficient - also known as Cohen’s kappa, is a statistical 
measure that assesses the agreement between two raters or classifiers, 
considering the agreement that could occur by chance alone. It can be 
calculated as 

κ = (Po − Pe)/(1 − Pe) (5) 

Table 1 and Table 2 show performance comparisons of ML Classifiers 
without using PCA and using PCA, respectively. Table 1 shows that the 
Random Forest and K-Nearest Neighbour classifiers demonstrated high 

Fig. 7. Confusion matrix using PCA ((a) Random Forest, (b) KNN, (c) Decision Tree (d) Naïve Baye, (e) SVM, (f) Logistic Regression).  
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precision, recall, F1-score, accuracy, and kappa coefficient. The Decision 
Tree classifier also performed reasonably well but showed slightly lower 
performance than the top-performing algorithms. The Support Vector 
Machines (Linear) and Logistic Regression models exhibited moderate 
performance, while the Naïve Bayes classifier showed notably lower 
performance. On the other hand, when PCA is applied, the overall per-
formance of the classifiers improves. Table 2 shows that the Random 
Forest classifier exhibits the highest precision, recall, F1-score, and ac-
curacy values. The K-Nearest Neighbour and Decision Tree classifiers 
show good performance. However, the Support Vector Machines Linear, 
Logistic Regression, and Naïve Bayes classifiers demonstrate relatively 
lower performance. These findings highlight the effectiveness of PCA in 
enhancing the performance and agreement of classifiers for DDoS attack 
detection, with the Random Forest classifier consistently demonstrating 

strong performance and high agreement across both scenarios. The vi-
sual representation of Table 1 and Table 2 are shown in Fig. 8 and Fig. 9, 
respectively. The x-axis represents the classifiers, while the y-axis rep-
resents the metric scores. Each classifier is represented by a bar, and the 
height of the bar corresponds to the value of the specific metric. This bar 
graph provides a comparative overview of the performance of each 
classifier. 

The precision-recall curves provide valuable insights into the per-
formance of the classifiers with and without PCA, as shown in Fig. 10 
and Fig. 11, respectively. The average precision (AP) values for each 
classifier indicate the overall quality of the precision-recall trade-off. 
The higher average precision values generally indicate better classifier 
performance regarding precision and recall. The results show that all 
classifiers perform excellently, with Random Forest achieving an 
average precision of 1.00 in both scenarios. Comparing the results be-
tween the two scenarios, it can be observed that using PCA generally 
improves the performance of the classifiers in terms of average preci-
sion. Gaussian Naive Bayes, Logistic Regression, and Support Vector 
Machines exhibit notable improvements with the inclusion of PCA, 
while K-Nearest Neighbours and Decision Tree maintain similar per-
formance levels. 

Fig. 12 and Fig. 13 represent the ROC curve, without PCA and with 
PCA, and give information about how well the classifiers work. Most of 
the time, a better trade-off between precision and recall is shown by a 

Table 1 
Performance Comparision of ML Classifiers without using PCA.   

Precision Recall F1- 
Score 

Accuracy Kappa 

Random Forest  0.9970  0.9987  0.9978  0.9980  0.9245 
K-Nearest Neighbour  0.9898  0.9914  0.9906  0.9912  0.9964 
Decision Tree  0.9521  0.9669  0.9595  0.9624  0.9824 
Support Vector 

Machines Linear  
0.9772  0.8753  0.9234  0.9243  0.7847 

Logistic Regression  0.9123  0.8649  0.8880  0.8924  0.8923 
Naïve Bayes  0.1903  0.8093  0.3082  0.6007  0.1584  

Table 2 
Performance Comparision of ML Classifiers using PCA.   

Precision Recall F1- 
Score 

Accuracy Kappa 

Random Forest  0.9979  0.9994  0.9986  0.9987  0.9473 
K-Nearest Neighbour  0.9901  0.9914  0.9908  0.9914  0.9976 
Decision Tree  0.9795  0.9648  0.9721  0.9737  0.9827 
Support Vector 

Machines Linear  
0.9446  0.9865  0.9651  0.9680  0.8013 

Logistic Regression  0.9041  0.8861  0.8951  0.9009  0.9371 
Naïve Bayes  0.8011  0.9129  0.8534  0.8714  0.7397  

Fig. 8. Bar graph of different ML Classifiers without using PCA.  

Fig. 9. Bar graph of different ML Classifiers using PCA.  

Fig. 10. Precision-Recall Curve without using PCA.  

Fig. 11. Precision-Recall Curve using PCA.  
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higher AUC-PR number. Based on the results, it’s clear that all models do 
a great job, with Random Forest always getting an AUC of 1.00 in both 
cases. When the results of the two cases are compared, it can be seen that 
using PCA improves the AUC-PR values of the models in general. 
Gaussian Naive Bayes, Logistic Regression, and Support Vector Ma-
chines improve when PCA is added, but K-Nearest Neighbours and De-
cision Tree don’t change much. 

Overall, the results suggest that incorporating PCA as a preprocess-
ing step enhances the precision-recall trade-off for DDoS attack detec-
tion in IoT. It provides more effective feature representation, leading to 
improved classifier performance, particularly for algorithms that rely on 
linear separation or probabilistic modeling. 

6. Conclusion 

In this research, we examine the NSL-KDD dataset and how machine 
learning algorithms can detect distributed denial of service (DDoS) as-
saults on Internet of Things (IoT) devices. The research looked at how 
well six different ML classifiers could identify DDoS attacks. We tested 
the classifiers both with and without principal component analysis 
(PCA) applied first. When it came to correctly identifying DDoS attacks, 
the results demonstrated that the Random Forest classifier routinely 
attained the greatest values for precision, recall, F1-score, accuracy, and 
kappa coefficients. While Naïve Bayes showed relatively poor 

performance, the K-Nearest Neighbour and Decision Tree classifiers 
both showed strong results. In most cases, PCA enhanced the classifiers’ 
performance, which in turn increased their accuracy, recall, F1-score, 
precision, and kappa coefficient values. Our research shows that ma-
chine learning classifiers are effective at identifying distributed denial of 
service (DDoS) assaults on internet of things (IoT) devices. Specifically, 
we found that Random Forest classifier and principal component anal-
ysis (PCA) as a feature selection method performed quite well in this 
regard. 
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