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ABSTRACT Smart Cities refer to urban areas which exploits recent technologies for improving the 

performance, sustainability, and livability of their infrastructure and services. Crowd Density Analysis 

(CDA), a vital component of Smart Cities, involves the use of sensors, cameras, and data analytics to monitor 

and analyze the density and movement of people in public spaces. CDA utilizing DL harnesses the control of 

neural networks to mechanically and exactly evaluate the density of crowds in numerous settings, mainly in 

smart cities. DL techniques like Recurrent Neural Network (RNN) and Convolutional Neural Network 

(CNN), are trained on vast datasets of crowd videos or images to learn complex designs and features. These 

models can forecast crowd density levels, recognize crowd anomalies, and offer real-time visions into crowd 

behavior. This study designs an Artificial Intelligence Driven Crowd Density Analysis for Sustainable Smart 

Cities (AICDA-SSC) technique. The aim of the AICDA-SSC method is to analyze the crowd density and 

classify it into multiple classes by the use of hyperparameter-tuned DL models. To accomplish this, the 

AICDA-SSC technique applies contrast enhancement using the CLAHE approach. Besides, the complex and 

intrinsic features can be derived by the use of the Inception v3 model and its hyperparameters can be chosen 

by the use of the marine predator’s algorithm (MPA). For crowd density detection and classification, the 

AICDA-SSC technique applies a gated recurrent unit (GRU) model. Finally, a chaotic sooty tern optimizer 

algorithm (CSTOA) based hyperparameter selection procedure takes place to increase the effectiveness of 

the GRU system. The experimental evaluation of the AICDA-SSC technique takes place on a crowd-density 

image dataset. The experimentation values showcase the superior performance of the AICDA-SSC method 

to the recently developed DL models. 

INDEX TERMS Crowd Density; Artificial Intelligence; Sustainable; Chaotic Sooty Tern Optimization; 

Smart Cities 

I. INTRODUCTION 

A smart city is a full entity that combines tangible and non-

tangible sources for use by its people [1]. The compatibility of 

ICT-based infrastructures with fixed infrastructures is 

essential to become a system efficient in providing predictable 

services to people, without disturbing or negotiating the 

excellence of life [2]. It is also considered an advanced design 

to provide sustainable development and service by satisfying 

the 6 sizes of sustainability namely environment, people, 

economy, mobility, governance, and living. As a crucial part 

and one of the 6 sizes for developing smart cities, mobility 

must be given special and significant attention [3]. The 

concept of supportable transport methods as an essential part 
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of emerging smart cities is being beaten. Because the 

conventional methods of transport assumed in traditional cities 

are joined with in-built tasks like congestion issues, accident 

occurrence, pollution, and much more, these are dangers to the 

method and delay the socio-economic actions of smart cities 

[4]. Urban surveillance has changed from grainy CCTV 

footage to high-definition streams managed by neural 

networks. These networks are trained on huge datasets that can 

differentiate among the movement of vehicles and people, 

deduce crowd creations, and even recognize unusual designs 

that might direct possible dangers [5]. 

Over the past years, crowd analysis (CA) has revealed 

steady development owing to the arrival of new techniques 

[6]. Deep learning (DL) methods have been increasingly 

utilized for numerous uses owing to discriminatory control 

and effectual functional removal. Many models employed in 

traditional CA were improper for modern surveillance due to 

definite restrictions. Normally, modern surveillance methods 

are categorized by intense worries and dynamicity in crowd 

motion styles and the functioning situations of surveillance 

tools [7]. This dissimilar feature can confuse the usage of 

present models in the analysis and monitoring of the dense 

crowd. CA researchers must improve new models to reply to 

the worry in the novel atmosphere where computer vision 

(CV) is gradually required to observe and analyze numerous 

people from video footage of the surveillance cameras in real-

time [8]. This involves evaluating the assortment of the crowd 

and the density distribution across the complete collection 

area. Recognizing regions above security can aid in delivering 

prior alarms and could stop crowd crushes [9]. The estimation 

of the number of crowds also aids in measuring the 

significance, logistics, and substructure of the event. With the 

improvement of hardware technology and the DL model, the 

performance of numerous CV tasks has been significantly 

enhanced, and CNN has played a significant part in many tasks 

namely image classification, target recognition, and semantic 

segmentation [10]. So, CNN was commonly employed in 

calculating tasks, and the related performance has been 

enhanced. 

This study designs an Artificial Intelligence Driven Crowd 

Density Analysis for Sustainable Smart Cities (AICDA-SSC) 

technique. To achieve this, the AICDA-SSC model uses 

contrast enhancement using the CLAHE approach. Besides, 

the complex and intrinsic features can be derived by the use of 

the Inception v3 model and its hyperparameters can be chosen 

by the use of the marine predators’ algorithm (MPA). For 

crowd density detection and classification, the AICDA-SSC 

technique applies a gated recurrent unit (GRU) model. Finally, 

a chaotic sooty tern optimizer algorithm (CSTOA) based 

hyperparameter selection procedure takes place to improve the 

efficacy of the GRU system. The experimental evaluation of 

the AICDA-SSC technique takes place on crowd crowd-

density image dataset. In short, the key contributions of the 

paper are listed as follows. 

 An automated AICDA-SSC technique comprising 

Inception v3 feature extractor, MPA-based 

hyperparameter tuning, GRU classification, and 

CSTOA based parameter selection has been developed 

for crowd density detection. In order to the best of our 

knowledge, the AICDA-SSC technique never existed 

in the literature.  

 Combines the Inception v3 structure as feature 

extraction, improving the model's capability to take 

and examine difficult patterns within crowd density 

data, thus refining the accuracy of crowd analysis in 

smart cities. 

 Uses the MPA to modify hyperparameters, enhancing 

the performance of the crowd density study method. 

MPA's bio-inspired optimizer technique donates to the 

efficacy and flexibility of the model. 

 Includes GRU as portion of the AICDA-SSC method, 

allowing the technique to efficiently take and study 

time-based dependences in crowd density information, 

improving the accuracy of forecasts over time. 

 Executes the CSTOA for hyperparameter range, 

donating to the sturdiness and flexibility of the 

technique by dynamically fine-tuning parameters 

dependent upon chaotic optimizer principles. 

 The incorporation of MPA and CSTOA reproduces a 

hybrid optimization approach, merging bio-inspired 

models and chaotic optimizer principles to improve the 

model's flexibility and performance. 

II. RELATED WORKS 

Zhu et al. [11] develop a comprehensive AI-based CA 

model structure for rail transport stations, by examining and 

picturing CA information from video frames of highest 

density crowds. Then a general AI helped organizational 

structure (AI Crowd) was developed. Deep SORT and YOLO 

have been combined into the model structure. Camera 

calibration is employed to convert identified paths into a real-

life organized method. Bai et al. [12] reflect on crowd mindset 

and other aspects and begin a fixed basic technique of crowd 

assembly designs. To fuse actual multi-granularity 

surveillance videos with dissimilar viewpoints, multi-column 

CNNs (M-CNNs) have been employed to remove the local 

compactness features of the crowd in a lower-altitude 

viewpoint. 

In [13], the KSA in crowd organization utilizing AI through 

the Hajj was tested to generate a technique for the same 

situations. This research used the descriptive systematic 

model. The Arc Gis Pro 2.9.2 is utilized to generate maps. A 

strategic study was also directed to the KSA in crowd 

organization utilizing a SWOT study. Rezaee et al. [14] 

inspect UAV excess and irregular population action designs. 

Furthermore, the aim is to examine accepted video frames 

from UAVs. Yu et al. [15] developed a result of actual 3D 

visualization of outside acts permitted by Visual IoT (V-IoT) 

and AI. Primary, LiDAR, infrared cameras, gas sensors, 
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airborne and fixed cameras, etc. are used to gather multi-

modal information and forward it to the clouds. AI techniques 

have been implemented in the cloud. Lastly, the clouds guide 

the AI model outcomes to the visual method in station devices.  

Solmaz et al. [16] developed a novel adaptive machine 

learning (ML) method, termed CountMeIn, to find the crowd 

estimate issue by employing neural networks and polynomial 

regression. CountMeIn adjusts Wi-Fi utilizing the proficient 

method and preserves the highest accuracy after training for 

an extended period without cameras. Ahmed et al. [17] 

proposed an IoT-based crowd surveillance method that 

utilizes a DL model. Dual virtual lines are definite to total how 

many people are going or arriving at the part. Prezioso et al. 

[18] project a new framework that integrates the general 

YOLO object recognition system with innovative CA 

methods. The developed structure influences YOLO’s actual 

object recognition abilities to discover numerous things within 

video frames and concentrate on finding people. 

Al Duhayyim et al. [19] provide Aquila Optimizer with TL 

based Crowd Density Analysis for Sustainable Smart Cities 

(AOTL-CDA3S) method. This model aims to recognize 

dissimilar types of crowd densities in the smart cities. In [20], 

a new system design is defined for real-time crowd detection. 

Also, a privacy-aware platform that assists the application of 

AI devices using identified Wi-Fi traces is also suggested. 

Guastella et al. [21] offer the HybridIoT model over an 

estimate model that assimilates heterogeneous data attained 

from a few dissimilar sensors. Yang et al. [22] presents a novel 

technique. Initially, a crowd density estimate model dependent 

upon Tencent user density (TUD) data is constructed for 

dissimilar times in open public spaces. 

Padmaja et al. [23] presented work to make a method that 

can categorize normal and abnormal crowd Behaviour 

utilizing an actual time video surveillance method to identify 

abnormalities and observe crowded metropolitan zones. Zhou 

et al. [24] proposes MJPNet-S*, a multistyle joint-perception 

network for RGB-T/D crowd density estimation on drones. 

This model incorporated a novel trimodal module and a two-

step hybrid model, together with a lightweight student network 

assisted by neighboring collaborative distillation. In [25], the 

E2C model, together with systematic evaluation and 

intellectual computing models is proposed, for carbon 

emissions in visual computing. 

III. THE PROPOSED MODEL 

In this work, an AICDA-SSC method is presented. The 

purpose of the AICDA-SSC method is to analyze the crowd 

density and classify it into multiple classes by the use of 

hyperparameter-tuned DL models. To accomplish this, the 

AICDA-SSC technique aims to identify different kinds of 

processes such as preprocessing, feature extractor, 

classification, and parameter tuning process. Fig. 1 shows the 

complete procedure of the AICDA-SSC system. 

 

FIGURE 1. Overall procedure of the AICDA-SSC technique 

A. PREPROCESSING  

At the primary level, the AICDA-SSC technique applies 

contrast enhancement using the CLAHE approach. Resizing 

and contrast enhancement processes are performed during the 

preprocessing stage [26]. The initial stage is to resize the input 

images and the CLAHE approach is used to improve the 

difference. The CLAHE technique improves image clarity 

with the lowest contrast. It has shown to be a robust 

mechanism for optimizing and organizing digital images. 

CLAHE includes dual vital advantages beyond the histogram 

equalization technique. Initially, the CLAHE model is 

predictable to improve the intensity of individual pixels more 

evenly. By using the classical histogram equalization 

technique, the array of the histogram is extended, which 

results in a more even distribution of grey values throughout 

the image. 

CLAHE improves the difference in every zone, resulting in 

an enhanced contrast throughout the whole image. 

𝐷𝐵 =
255

8 × 8
∑ 𝐻

𝐷𝐴

𝑖=0

(𝑖)                                                    (1) 

Next, CLAHE can reduce the problem of noise 

enhancement by restricting contrast enhancement. The 

histogram height is enlarged to L to improve the visual symbol 

while retaining the similar histogram as follows: 
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𝐻(𝑖) == {
𝐻(𝑖) + 𝐿, 𝐻(𝑖) < 𝐻𝑚ax

     𝐻𝐻(𝑖)𝑚𝑎𝑥𝑚𝑎𝑥

                             (2) 

B. INCEPTION V3 MODEL 

For the feature extraction process, the Inception v3 can be 

employed. The CNN could remove data features layers by 

layers over the slip function of the convolutional kernel and 

has been widely used in various fields [27]. The main way to 

increase the performance of a system is by enlarging the 

network depth and width, but it results in difficult network 

training and overfitting. 

The Inception model is a powerful tool to resolve the 

problem, which exploits convolutional kernel of dissimilar 

sizes for similar layer feature maps, then passed over kernel 

size 1×1 convolution for the reduction of channel 

dimensionality, lastly, the channel splicing is summarized for 

the extraction of feature data. While expanding the network 

width, the amount of parameters remains equal. InceptionV3 

is a deep CNN architecture that has made important 

contributions to the area of CV and image recognition. 

Presented by Google researchers, it signifies a prominent 

development in DL techniques. InceptionV3 uses an exclusive 

and new inception unit, integrating equivalent convolutions of 

dissimilar dimensions within the similar layer, permitting the 

system to capture multi-scale features competently. This 

architecture enables the removal of complex hierarchical 

designs from images, making it mainly effectual for tasks such 

as object detection and image classification. InceptionV3 is 

well-known for its extraordinary accuracy on large-scale 

image databases, like ImageNet, and its capability to simplify 

well to varied visual detection tasks. Its victory lies in arresting 

a balance between model difficulty and computational 

efficacy, making it a general choice for numerous CV 

applications in either industry or research. 

Batch normalization is commonly applied between the 

activation function and the convolutional layer, which 

standardizes the data in the channel size, which could 

efficiently improve training speed, resolve the gradient 

disappearing problem, and decrease the over-fitting 

phenomenon. The mathematical expression is: 

𝜇𝐵 =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

                                                                  (3) 

𝜎𝐵
2 =

1

𝑚
∑(

𝑚

𝑖=1

𝑥𝑖 − 𝜇𝐵)2                                                   (4) 

𝑥𝑖̂ =
𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 − 𝜀

                                                                   (5) 

𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽̂                                                                (6) 

Where the average of the training batch is represented as 

𝜇𝐵, the training batch variance is 𝜎𝐵
2, the data in a single 

network is 𝑚, and the 𝑖𝑡ℎ data on the feature maps before and 

after normalize, pan and zoom are 𝑥𝑖 , 𝑥𝑖̂, and 𝑦𝑖 , 

correspondingly. 𝛽 and 𝛾 denote the translation and spatial 

scaling of control factors, correspondingly; the constant 𝜀 is 

evaluated when the variance is 0. 
Next, the hyperparameters can be chosen by the use of 

MPA. The MPA replicas the foraging behavior strategy of 

marine predators [28]. The Levy fly in a lower prey attention 

atmosphere and Brownian effort in sufficient regions. The 

metaheuristic presents an equilibrium among Brownian as 

well as Levy tactics for dissimilar movement features of 

solution candidates. This optimizer procedure is separated into 

3 stages, approaching the relative speeds among predator and 

prey, and exhibiting the Fish Aggregation Device (FAD) 

effect reliable for the hunter’s behavioral variations. Besides, 

since predators regularly arrive in previously visited and 

foraging regions, the procedure remembers them. 

In an initialized phase of this population-based system, all 

individual solutions have been evenly spread as follows: 

𝑋0 = 𝑋min + 𝑟(𝑚𝑑(𝑋max − 𝑋min),                                 (7) 

Where  𝑋𝑚𝑎𝑥  and 𝑋min denote the upper and lower limits 

and 𝑟𝑎𝑛𝑑 is an even random vector in [0 and 1]. The 

procedure rules the performance of dual kinds of individuals 

signified by Elite and Prey in Eqs. (8) and (9) matrixes, 

respectively. 

𝐸𝑙𝑖𝑡𝑒 =

[
 
 
 
 
𝑋1,1

𝐼 𝑋1,2
𝐼 ⋯ 𝑋1,𝑑

𝐼

𝑋2,1
I 𝑋2,2

I ⋯ 𝑋2,𝑑
I

⋯ ⋯ ⋯ ⋯
𝑋𝑛,1

𝐼 𝑋𝑛,2
𝐼 ⋯ 𝑋𝑛,𝑑

𝐼 ]
 
 
 
 

.              (8)  

From the abovementioned equation, 𝑑 represents the size of 

the problem, 𝑋l signifies the best predator vector and 𝑛 refers 

to the amount of individual’s solution. 

𝑃𝑟𝑒𝑦 = [

𝑋1,1 𝑋1,2 ⋯ 𝑋1,𝑑

𝑋2,1 𝑋2,2 ⋯ 𝑋2,𝑑

⋯ ⋯ ⋯ ⋯
𝑋𝑛,1 𝑋𝑛,2 ⋯ 𝑋𝑛,𝑑

].              (9) 

In the equation of Prey, the 𝑗𝑡ℎ dimension of the 𝑖𝑡ℎ prey is 

represented by 𝑋𝑖,𝑗 .  
The stages in the MPA are dependent upon the development 

of the optimizer procedure. For the 1st one-third of iteration, 

the procedure arrives at Stage 1, where the highest velocity 

ratio is imitated, i.e., the hunter moves quicker than the target. 

Therefore, the 𝑖𝑡ℎ prey, 𝑖 = 1,2, …,𝑛 is defined in Eq. (10). 

𝑃𝑟𝑒𝑦𝑖 = 𝑃𝑟𝑒𝑦𝑖 + 𝑃 ∗ 𝑅

⊗ (𝑅𝐵

⊗ (𝐸𝑙𝑖𝑡𝑒𝑖 − 𝑅𝐵 ⊗ 𝑃𝑟𝑒𝑦𝑖)),                (10) 

Where P refers to the constant number (𝑃 = 0.5),  𝑅𝐵 

denotes the vector of generally dispersed normal numbers, R 

signifies the vector of evenly spread random numbers in 

[0 and 1], and′ ⊗ ′ represents the elementwise 

multiplication. In Stage 1, the stage of exploration plays the 

main part, while, in the next one-third of iterations, 

exploitation and exploration stages have been similarly 

arranged. Here, the algorithm arrives at Stage 2, pretending the 

unit velocity ratio. At this stage, the 𝑖𝑡ℎ prey has been 

upgraded using its location in the population.  
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𝑃𝑟𝑒𝑦𝑖

= {
𝑃𝑟𝑒𝑦𝑖 + 𝑃 ∗ 𝑅 ⊗ (𝑅𝐿 ⊗ (𝐸𝑙𝑖𝑡𝑒𝑖 − 𝑅𝐿 ⊗ 𝑃𝑟𝑒𝑦𝑖)), 𝑖𝑓 𝑖 ≤ 𝑛/2

𝐸𝑙𝑖𝑡𝑒𝑖 + 𝑃 ∗ 𝐶𝐹 ⊗ (𝑅𝐵 ⊗ (𝑅𝐵 ⊗ 𝐸𝑙𝑖𝑡𝑒𝑖  —𝑃𝑟𝑒𝑦𝑖)), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
   (11) 

Where 𝑅𝐿 denotes the random vector numbers and 𝐶𝐹 =

(1 −
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟max
)

2∗𝑖𝑡𝑒𝑟

𝑖𝑟𝑒𝑟max.  The CF is employed to handle the stage 

size of the hunter’s effort. In Stage 3, which survives to the 

finale of the optimizer procedure, the lowest velocity 

percentage is reflected. Where the 𝑖𝑡ℎ prey is measured as 

exposed in Eq. (12). 

𝑃𝑟𝑒𝑦𝑖 = 𝐸𝑙𝑖𝑡𝑒𝑖 + 𝑃 ∗ 𝐶𝐹

⊗ (𝑅𝐿 ⊗ (𝑅𝐿 ⊗ 𝐸𝑙𝑖𝑡𝑒𝑖—𝑃𝑟𝑒𝑦𝑖))    (12) 

The marine predator’s memory is pretended by the fitness 

contrast of the present candidates from the preceding 

iterations, declining worst candidates. 

To simulate the effect of FADs, the algorithm adjusts the 

Prey, i.e. 
𝑃𝑟𝑒𝑦𝑖

= {
𝑃𝑟𝑒𝑦𝑖 + 𝐶𝐹[𝑋min + 𝑅 ⊗ (𝑋max − 𝑋min)] ⊗ 𝑈, 𝑖𝑓 𝑟 ≤ 𝐹𝐴𝐷𝑠

𝑃𝑟𝑒𝑦𝑖 + [𝐹𝐴𝐷𝑠(1 − 𝑟) + 𝑟](𝑃𝑟𝑒𝑦𝑟1 —𝑃𝑟𝑒𝑦), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
    (13) 

Whereas FADs are the effect probability of (0.2), 𝑈 is the 

dual vector generated by a threshold vector in the range of 

[0 and 1]. The binarization adapts the values higher than 0.2 

to 1 and sets the residual to 0. The 𝑟1 and 𝑟2 have been chosen 

preys at random, 𝑟1, 𝑟2 ∈ {1,2, … , 𝑛}. 

C. CROWD DENSITY CLASSIFICATION USING GRU 

The AICDA-SSC technique uses the GRU technique for 

crowd density recognition and classification. This part 

describes the common procedure of GRU. It is an innovative 

form of Standard RNN [29]. The LSTM contains 3 gates 

which will not preserve the interior cell layer but are combined 

into the hidden layer (HL) of the RNN. This data has been 

moved to the next GRU. Numerous gates of GRU are definite 

below. 

1) UPDATE GATE  

It describes several prior knowledge sent to the prospect. It 

defines the equivalent output gate in the LSTM recurrent unit. 

It has been expressed utilizing 

𝑦 = 𝜎(𝑊(𝑦)𝑍𝑡 + 𝑉(𝑦)𝐻𝑡−1)                                        (14) 

where 𝑍𝑡 denotes the unit of the network that is multiplied 

by the value of the weight 𝑊(𝑦). That is forwarded to the HL 

𝐻𝑡−1, which contains the data of the prior layers and is 

increased by its weight values 𝑉(𝑦). These dual grades have 

been included to offer the last outcome in the update gate 

among 0 and 1. This can be signified many past data needs to 

be sent to the prospect. It can be employed to remove the 

danger of gradient issues. 

2) RESET GATE 

It signifies how much earlier information can be neglected. 

It matches an input gate and ignores it in an LSTM recurrent 

unit.  

𝑅 = 𝜎(𝑊(𝑦)𝑍𝑡 + 𝑉(𝑦)𝐻𝑡−1)                                         (15) 

The dual outcomes are included and then increased by their 

values of weight, and the task of sigmoid value is functional 

to the output solutions. 

3) CURRENT MEMORY GATE 

This type of gate is combined into the reset gate. It delivers 

the non-linearity input and offers 0 mean input. It is employed 

in order to decrease the result that prior data of the existing 

data is sent to the prospect gate. The current memory gate 

calculation is executed utilizing 

𝐻 =  tanh (𝑊𝑧𝑡 + 𝑅 ⊙ 𝑉𝐻𝑡−1)                                   (16) 

The input 𝑧𝑡 and HL are increased by their value of weight. 

Then, calculate the product of Hadamard among the reset 

gates 𝑅 ⊙ 𝑉𝐻𝑡−1. Next, enlarge the initial output and second 

procedure values. The tanh nonlinear activation function has 

been used to analyze the present memory content. Lastly, 

compute the HL values that contains the existing values and 

direct it to the system, executed by the update gate. It defines 

the present memory content and is expressed by utilizing 

𝐻𝑡 = 𝑦𝑡 ⊙ 𝐻𝑡−1 + (1 − 𝑦𝑡) ⊙ 𝐻𝑡                                (17) 

Implement elementwise multiplication to the update gate 

and compute to (1 − 𝑦𝑡) ⊙ 𝐻𝑡 . Lastly, add these dual 

outcomes for computing the present memory content of the 

GRU. It improves the RNN memory capability and resolves 

the vanishing gradient issues. 

The main improvement of GRUs will be the usage of gating 

devices to handle the flow of data inside and outside of the 

cell. The gating device contains 2 gates such as reset and 

update. The projected bi-directional RNN contains dual layers 

of RNN which can procedure simultaneously 𝑌 is input and 𝑌𝑘 

signifies the dissimilar inputs with diverse time stamps. The 

processing has been executed simultaneously, and the layers 

are organized consecutively. The HL of RNN contains dual 

HLs defined for each timestep. The HLs are joined into one 

layer by including dual inputs utilizing an easy addition 

function. Bi-directional RNN performs every neuron of the 

system. The feature match procedure reflects the output and 

input features to process the timestep. RNN contains Soft 

GRU which has a low complexity, and procedures the input 

𝑥̃𝑘,𝑛 utilizing past ℎ𝑘−1,𝑛. This procedure has low difficulty 

owing to the soft plus and activation function. The developed 

Soft GRU is definite as. 

ℎ𝑘,𝑛 = (1 − 𝑧𝑡) ⊙ ℎ𝑘−1,𝑛 + 𝑧𝑡 ⊙ 𝑥̃𝑘,𝑛                          (18) 

𝑥̃𝑘,𝑛 = 𝜋(𝑊x𝑥𝑘,𝑛 + 𝑏𝑥)                                           (19) 

𝑧𝑡 = 𝜎(𝑊x𝑥𝑘,𝑛 + 𝑈𝑧𝑥𝑘−1,𝑛 + 𝑏𝑧)                                  (20) 

Whereas 𝜋(𝑥) signifies the soft plus function that is 

calculated as (1 + 𝑒𝑥) and 𝜎 signifies the function of the 

sigmoid and 𝑏𝑋, 𝑏𝑧 denotes the biased values, and 𝑊𝑋, 𝑊𝑧, and 

𝑈𝑧 epitomizes the weight values. GRU can work for the 

natural language process, which uses both historical and 

present information about traffic, social media, weather, and 

roads that are accessible in the edge servers.  

D. CSTOA-BASED PARAMETER TUNING  

Finally, the CSTOA-based hyperparameter selection 

process takes place to improve the efficiency of the GRU 

model. STOA is a novel search optimizer technique dependent 

upon the feeding behaviors of sooty terns that comprises two 

stages: a global search stage which pretends terns migrate and 
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a local search stage where the tern circles and attacks the target 

[30]. Like other population techniques, every sooty tern 

signifies a search agent, and each search agent-organized 

constructs the matrix 𝑋. During initialization stage, the 

method begins by creating an early matrix within the search 

range. 

𝑋 =

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

=

[
 
 
 
 
𝑥11 … 𝑥1𝑗 … 𝑥1𝑚

⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑖1 … 𝑥𝑖𝑗 … 𝑥𝑖𝑚

⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑁1 … 𝑥𝑁𝑗 … 𝑥𝑁𝑚]

 
 
 
 

𝑁×𝑚

     (21) 

In Eq. (4), the population matrix is 𝑋; the value of the search 

agent at a size is 𝑥𝑖𝑗; the vector of the search agent, 

representing an initial random solution at the initial phase is 

𝑋𝑖  and updated at the iterative computation, the index of the 

search agent is 𝑖; the size index is 𝑗; the size of search space is 

𝑚; and the number of populations is 𝑁. 

1) MIGRATION BEHAVIOR (GLOBAL SEARCH) 

Sooty terns (ST) are involved in the behavior of migrants in 

the hunt for plentiful food resources. The main reason for this 

stage is to rapidly recognize the optimum region by searching 

for the overall search stage at random [31]. This stage contains 

3 parts namely conflict avoidance, update of position, and 

aggregation. 

2) CONFLICT AVOID 

To evade crashes among individuals throughout the 

movement, extra mass 𝑆𝐴 has been developed in the iterative 

computation to upgrade single locations. 

𝐶 = 𝑆𝐴 × 𝑋(𝑡)                                                            (22) 

Whereas 𝐶 refers to the location in the instance of no 

collisions with other individuals, 𝑋(𝑡) denotes the search 

agent position, 𝑡 signifies the present iteration index, 𝑆𝐴 

denotes an extra variable employed to evade collisions that are 

intended as: 

𝑆𝐴 = 𝑐𝑓 × (1 −
𝑡

𝑇
)                                                    (23) 

Where 𝑐𝑓 denotes the constant utilized to alter 𝑆𝐴, which is 

normally fixed to 2, 𝑇 refers to the highest amount of 

iterations. So, 𝑆𝐴 will consecutively reduce from 𝑡𝑤𝑜 to 𝑧𝑒𝑟𝑜. 

3) AGGREGATION 

After evading collisions among adjacent agents, the search 

agents will travel near the finest location amid the adjacent 

agents, that is, near the location of the optimum result which 

is stated below: 

𝑀 = 𝐶𝐵 × (𝑋𝑏𝑒𝑠𝑖(𝑡) − 𝑋(𝑡))                                           (24) 

Here, 𝑀 signifies the procedure of traveling 𝑋 at dissimilar 

positions near the 𝑋𝑒𝑠𝑡  place of the optimum solutions, and 𝐶𝐵 

states the random number utilized for making the search more 

complete. The expression is as below: 

𝐶𝐵 = 0.5 × 𝑅𝑎𝑛𝑑                                                 (25) 

Where Rand denotes the random value among (0𝑎𝑛𝑑1). 

4) UPDATE OF POSITION 

The search agent upgrades its location dependent upon the 

finest location, which is expressed as: 

𝐷 = 𝐶 + 𝑀                                                            (26) 

Here, 𝐷 is the space among the present individuals and the 

global optimum positions. 

5) BEHAVIOR OF MIGRATION (LOCAL SEARCH) 

If ST wants to affect their target at the time of migration, 

suddenly they will fly in a curved form in the sky. The 

equation has been stated below: 

{

𝑥′ = 𝑅 ×  sin (𝑖)

𝑦′ = 𝑅 ×  cos (𝑖)

𝑧′ = 𝑅 × 𝑖
𝑅 = 𝑢 × 𝑒𝑘𝑣

                                               (27) 

Where 𝑢 and 𝑣 denote the constants that define the form of 

the spirals and have a value of 1. 𝑖 denotes the random variable 

that exists amid the range of (0 𝑎𝑛𝑑 2𝜋).  𝑅 represents the 

radius of every spiral. The position update of search agent 

formulation is as: 

𝑋(𝑡) = (𝐷 × (𝑥′ + 𝑦′ + 𝑧 × 𝑋𝑏𝑒𝑠𝑖(𝑡)                   (28) 

The spatial distribution of the initialized solution set in the 

metaheuristic algorithm is a crucial factor influencing the 

optimization result of the algorithm and global search speed. 

Based on the random number strategy, the early solution set 

produced in the STOA is hard to evenly issue within the search 

range which leads to a reduction in the search efficacy. 

Chaotic mapping has the features of regularity, randomness, 

and traversal are applied for initializing the position of STOA 

individuals employing chaotic sequence to prevent falling into 

local extreme. For the initial population, Circle chaotic 

mapping is applied. Circle mapping generates chaotic 

sequence expression, as follows:  

𝑛𝑢𝑚𝑖+1 = 𝑚𝑜𝑑 (𝑛𝑢𝑚𝑖 + 0.2 −
0.5

2𝜋

× sin(2𝜋 × 𝑛𝑢𝑚𝑖), 1)                         (29) 

In Eq. (29), 𝑛𝑢𝑚𝑖 indicates the value of 𝑖𝑡ℎ chaotic 

sequence and 𝑚𝑜𝑑 represents the residual operation. 

Assume[𝑍min,  𝑍max] as the search range of optimization 

objective problem and the chaotic sequence value of the circle 

map is 𝑛𝑢𝑚𝑖𝑗, the solution vector 𝑋 is formulated by Eq. (30):  

𝑥𝑖𝑗 = 𝑍min + (𝑧max − 𝑍min) × 𝑛𝑢𝑚𝑖𝑗                   (30) 

Algorithm 1: Pseudocode of STOA 

Input: the population size 𝑁, and Population 

initialization 𝑋 randomly.  

Output: Optimal searching agent, Xbest  

1: begin STOA  

2: Parameter initialization of SA and CB  

3: Determine the fitness of every search agent  

4: Xbest ← optimal searching agent  

5:      While (t<T) do  

6:          for every searching agent do  

7:               Update the position of searching agent  

8:          end for  

9:          Update the variables SA and CB  

10:        Determine the fitness of every search agent 

11:         Update Xbest if there is a better solution than 

the former optimum solution 

12:         t ← t+1 
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13:     end while  

14: return Xbest  

15: end  

The CSTOA model originates a fitness function (FF) to 

reach boosted classification effectiveness. It defines a positive 

integer to represent the superior execution of the candidate 

outcome. In this paper, the error rate of classifier reductions is 

examined as FF, as displayed in Eq. (31).    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
× 100                  (31) 

IV. PERFORMANCE VALIDATION 

This part examines the crowd density recognition results of 

the AICDA-SSC technique on the dataset comprising four 

classes and 1000 samples as definite in Table 1. Fig. 2 

determines the sample pictures. 
TABLE I 

DETAILS OF THE DATASET 

Labels Class Names 
No. of 

Instances 

Class0 Dense Crowd 250 

Class1 
Medium Dense 
Crowd 

250 

Class2 Sparse Crowd 250 

Class3 No Crowd 250 

Total No. of Instances 1000 

 

 

FIGURE 2. a) Dense Crowd b) Medium Dense Crowd c) Sparse Crowd d) 
No Crowd 

 

 

FIGURE 3. Confusion matrices of AICDA-SSC technique (a-f) Epochs 
500-3000 
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Fig. 3 exhibits the confusion matrices created by the 

AICDA-SSC model below numerous epochs. The outcomes 

specify the effective recognition and classification of four 

classes properly. 

The crowd density recognition outcome of the AICDA-SSC 

technique can be examined under varying epochs in Table 2 

and Fig. 4. These experimentation outcomes indicate that the 

AICDA-SSC model accurately recognizes four classes below 

all epochs. With 500 epochs, the AICDA-SSC technique 

attains an average 𝑎𝑐𝑐𝑢𝑦 of 96.75%, 𝑝𝑟𝑒𝑐𝑛 of 93.54%, 𝑟𝑒𝑐𝑎𝑙 

of 93.50%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 93.49%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 93.51%. In 

addition, with 1000 epochs, the AICDA-SSC model gains an 

average 𝑎𝑐𝑐𝑢𝑦 of 96.55%, 𝑝𝑟𝑒𝑐𝑛 of 93.15%, 𝑟𝑒𝑐𝑎𝑙 of 

93.10%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 93.09%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 93.11%.  
TABLE II 

CROWD DENSITY RECOGNITION OUTCOME OF AICDA-SSC TECHNIQUE 

UNDER SEVERAL EPOCHS 

Class 
Labels 

𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 𝑮𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

Epoch500 

Class-0 96.60 92.86 93.60 93.23 93.23 

Class-1 95.80 93.33 89.60 91.43 91.45 

Class-2 97.70 96.33 94.40 95.35 95.36 

Class-3 96.90 91.63 96.40 93.96 93.99 

Average 96.75 93.54 93.50 93.49 93.51 

Epoch1000 

Class-0 96.50 92.83 93.20 93.01 93.01 

Class-1 95.40 92.86 88.40 90.57 90.60 

Class-2 97.70 96.33 94.40 95.35 95.36 

Class-3 96.60 90.60 96.40 93.41 93.46 

Average 96.55 93.15 93.10 93.09 93.11 

Epoch1500 

Class-0 97.70 93.49 97.60 95.50 95.52 

Class-1 96.50 95.36 90.40 92.81 92.85 

Class-2 98.10 96.76 95.60 96.18 96.18 

Class-3 97.50 94.12 96.00 95.05 95.05 

Average 97.45 94.93 94.90 94.88 94.90 

Epoch2000 

Class-0 95.50 90.20 92.00 91.09 91.09 

Class-1 93.70 91.56 82.40 86.74 86.86 

Class-2 96.80 93.25 94.00 93.63 93.63 

Class-3 94.80 86.94 93.20 89.96 90.02 

Average 95.20 90.49 90.40 90.35 90.40 

Epoch2500 

Class-0 96.70 93.23 93.60 93.41 93.41 

Class-1 95.80 94.44 88.40 91.32 91.37 

Class-2 97.90 96.36 95.20 95.77 95.78 

Class-3 97.00 91.04 97.60 94.21 94.27 

Average 96.85 93.77 93.70 93.68 93.71 

Epoch3000 

Class-0 96.70 93.23 93.60 93.41 93.41 

Class-1 95.90 93.00 90.40 91.68 91.69 

Class-2 97.90 97.12 94.40 95.74 95.75 

Class-3 96.70 91.25 96.00 93.57 93.60 

Average 96.80 93.65 93.60 93.60 93.61 

 

FIGURE 4. Average of AICDA-SSC technique (a-f) Epochs 500-3000 

Followed by, with 1500 epochs, the AICDA-SSC method 

gains an average 𝑎𝑐𝑐𝑢𝑦 of 97.45%, 𝑝𝑟𝑒𝑐𝑛 of 94.93%, 𝑟𝑒𝑐𝑎𝑙  

of 94.90%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 94.88%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 94.90%.  

Moreover, with 2500 epochs, the AICDA-SSC algorithm 

attains an average 𝑎𝑐𝑐𝑢𝑦 of 96.85%, 𝑝𝑟𝑒𝑐𝑛 of 93.77%, 𝑟𝑒𝑐𝑎𝑙 

of 93.70%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 93.68%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 93.71%. Lastly, 

with 3000 epochs, the AICDA-SSC system gains an average 

𝑎𝑐𝑐𝑢𝑦 of 96.80%, 𝑝𝑟𝑒𝑐𝑛 of 93.65%, 𝑟𝑒𝑐𝑎𝑙 of 93.60%, 𝐹𝑠𝑐𝑜𝑟𝑒 

of 93.60%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 93.61%. 

The 𝑎𝑐𝑐𝑢𝑦 curves for training (TRA) and validation (VL) 

exposed in Fig. 5 for the AICDA-SSC algorithm at epoch 

1500 deliver valued visions into its performance. Mainly, 

there is a steady development in both TRA and TES 𝑎𝑐𝑐𝑢𝑦 to 

increasing epochs, demonstrating the model's capability to 

absorb and recognize designs from both TRA and TES data. 

The upward trend in TES 𝑎𝑐𝑐𝑢𝑦 underlines the model's 

adaptability to the TRA dataset and its ability to generate 

accurate estimates on hidden data, highlighting strong 

generalized capabilities. 
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FIGURE 5. 𝑨𝒄𝒄𝒖𝒚 curve of AICDA-SSC technique under epoch 1500 

Fig. 6 examines a comprehensive outline of the TRA and 

TES loss values for the AICDA-SSC technique under epoch 

1500. The TRA loss gradually minimization as the model 

improves its weights to diminish classification errors. The loss 

curves exhibit the model's location with the TRA data, 

emphasizing its capability to arrest designs efficiently. 

Notable is the incessant modification of parameters in the 

AICDA-SSC method, projected to reduce variances amongst 

forecasts and real TRA labels. 

 

FIGURE 6. Loss curve of AICDA-SSC technique under epoch 1500 

Regarding the precision-recall (PR) curve presented in Fig. 

7, the results approve that the AICDA-SSC technique under 

epoch 1500 steadily attains upgraded PR values across each 

class. These results highlight the model's actual ability to 

discriminate among dissimilar classes, highlighting its 

efficiency in precisely diagnosing class labels. 

Furthermore, in Fig. 8, we existing ROC curves formed by 

the AICDA-SSC technique under epoch 1500, representing its 

ability to differentiate among classes. These curves provide 

valuable visions into how the trade-off between TPR and FPR 

differs through diverse classification epochs and thresholds. 

The outcomes emphasize the model's precise classification 

efficiency under numerous class labels, underlining its 

efficacy to overcome various classification processes. 

 

FIGURE 7. PR curve of AICDA-SSC technique under epoch 1500 

 

FIGURE 8. ROC curve of AICDA-SSC technique under epoch 1500 

For guaranteeing the promising results of the AICDA-SSC 

model, a wide-ranging comparison assessment is made in 

Table 3 [32]. Fig. 9 examines a comparative 𝑝𝑟𝑒𝑐𝑛 and 𝑟𝑒𝑐𝑎𝑙 

study of the AICDA-SSC method. The results indicate that the 

Gabor and BoW-SRP model has presented the lowest values 

of 𝑝𝑟𝑒𝑐𝑛 and 𝑟𝑒𝑐𝑎𝑙. Next, the BoW-LBP and GLCM-SVM 

techniques have obtained slightly boosted values of 𝑝𝑟𝑒𝑐𝑛 and 

𝑟𝑒𝑐𝑎𝑙. Followed by, the GoogleNet and VGGNet models have 

demonstrated moderately closer values of 𝑝𝑟𝑒𝑐𝑛 and 𝑟𝑒𝑐𝑎𝑙 . 
Although the MDTL-ICDDC model reaches near-optimal 

𝑝𝑟𝑒𝑐𝑛 and 𝑟𝑒𝑐𝑎𝑙 of 92.90% and 92.90%, the AICDA-SSC 

technique demonstrates maximum 𝑝𝑟𝑒𝑐𝑛 and 𝑟𝑒𝑐𝑎𝑙 values of 

94.93% and 94.90%, respectively. 
TABLE III 

COMPARATIVE OUTCOME OF AICDA-SSC TECHNIQUE WITH OTHER 

APPROACHES   

Methods 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑨𝒄𝒄𝒖𝒚 𝑭𝑺𝒄𝒐𝒓𝒆 

Gabor 61.83 62.30 71.83 61.98 

BoW-SRP 68.33 67.85 80.40 67.88 

Bow-LBP 74.68 74.15 84.04 74.35 

GLCM-
SVM 75.47 73.52 79.78 87.99 

GoogleNet 82.98 85.26 84.40 81.00 

VGGNet 86.14 82.78 84.75 84.95 

MDTL-

ICDDC 92.90 92.90 96.45 92.87 
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AICDA-

SSC 94.93 94.90 97.45 94.88 

 

FIGURE 9. 𝑷𝒓𝒆𝒄𝒏 and 𝒓𝒆𝒄𝒂𝒍 the outcome of the AICDA-SSC technique 
with other approaches   

Fig. 10 surveys a comparative 𝑎𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒 study of 

the AICDA-SSC method. The results specify that the Gabor 

and BoW-SRP techniques have demonstrated minimum 

values of 𝑎𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒. Then, the BoW-LBP and GLCM-

SVM algorithms have attained moderately enhanced values of 

𝑎𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒 . Next, the GoogleNet and VGGNet systems 

have verified moderately nearer values of 𝑎𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒  . 
Although the MDTL-ICDDC system attains near optimum 

𝑎𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒  of 96.45% and 92.87%, the AICDA-SSC 

methodology determines the largest 𝑎𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒 values 

of 97.45% and 94.88%, correspondingly. 

 

FIGURE 10. 𝑨𝒄𝒄𝒖𝒚 and 𝑭𝒔𝒄𝒐𝒓𝒆 the outcome of the AICDA-SSC 

technique with other approaches   

These outcomes highlighted the greater performance of the 

AICDA-SSC algorithm in the crowd density recognition 

procedure. 

V. CONCLUSION 

In this manuscript, an AICDA-SSC method is developed. 

The purpose of the AICDA-SSC technique is to analyze the 

crowd density and classify it into multiple classes by the use 

of hyperparameter-tuned DL models. To accomplish this, the 

AICDA-SSC technique applies contrast enhancement using 

the CLAHE technique. Besides, the complex and intrinsic 

features can be derived by the use of the Inception v3 model 

and its hyperparameters can be chosen by the use of MPA. For 

crowd density detection and classification, the AICDA-SSC 

technique applies the GRU model. Finally, a CSTOA-based 

hyperparameter selection process take place to increase the 

efficacy of the GRU model. The experimental evaluation of 

the AICDA-SSC approach takes place on crowd crowd-

density image dataset. The obtained values of the AICDA-

SSC approach showcase the greater accuracy outcome of 

97.45% over recently developed DL models. The AICDA-

SSC technique face restrictions in adaptability and scalability 

to dynamic urban atmospheres. Future study may concentrate 

on improving scalability and robustness, and also to explore 

adaptive mechanisms for accommodating growing urban 

dynamics and diverse crowd characteristics. 
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