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A B S T R A C T   

The extensive growth of mobile technology leads to magnifying the usage of digital gadgets around the world. 
This requires a fast-interconnecting communication medium to transfer the data between the devices. Mean
while, the intruders attempt to make huge traffic in the network that leads to loss of data. To identify the 
intrusion attacks, ensemble Machine Learning (ML) classifiers are applied using the various feature variables 
importance. However, most of the transmitting data contains high dimensions with numerous variables leads to 
more execution time to classify the attacks. This study initiated the novel approach fusion of the Random Forest 
classifier and High Correlation (RFHC) feature selection approach to diminish the quantity of the variables. Also, 
the count of intrusion attacks class is lower than the normal class leads to generating an imbalanced dataset. 
Hence, Synthetic Minority Over-Sampling Technique (SMOTE) is suggested to create a balanced dataset for 
multi-class classification, and Un-upsampled data for binary-class classification respectively. The pre-processed 
dataset fed into the ensemble machine learners, and attention mechanism-based LSTM to classify as various 
intrusion attacks and normal data. This research work focused on reducing the CICIDS2017 dataset’s variable 
dimensions from 71 to 34 using RFHC. The performance results showed that RF classifier performed better with 
accuracy of 99.4 %, precision 99.4 %, average recall 99.2 % and average F1-score 99.6 % in binary-class clas
sification, and Extreme Gradient Boosting (XGBoost) achieved better accuracy of 99.7 %, precision 98.7 %, 
average recall 99.5 % and average F1-score 99.2 % in multi-class classification.   

1. Introduction 

An Intrusion Detection System (IDS) is a software-based application 
that monitors network traffic for malicious activity and provides noti
fications immediately if it detects anything suspicious (commonly 
known as an attack) in the network. Over the years, the network has seen 
a sharp growth in the types of attacks, and the attackers’ strategies have 
continued to evolve. Hence IDS must handle new, diverse forms of at
tacks and security threats for better security and functioning of a 
network. According to an Anti-Virus (AV) test report by a security 
software testing organization, around 140 million new malware samples 
were detected in the year 2020 [1]. The Corona Virus Disease of 2019 

(COVID-19) pandemic has also created new opportunities for cybercri
minals, significantly increasing phishing attacks as attackers sought to 
exploit uncertainties. On average, only five percent of companies’ 
folders are adequately protected [2]. According to the Identity Theft 
Resource Center’s 2021 Data Breach Report, there were 1,862 recorded 
data breaches in 2021, surpassing the 2017 record of 1,506 breaches [3]. 

Three methods exist for finding any intrusion (i) A Misuse-based or 
Signature-Based Approach, which uses the signatures of known attacks 
to identify them without raising plenty of false alarms [4,5], (ii) An 
analysis of traditional system and network performance using anomaly- 
based methodologies identifies inconsistencies as deviations from 
typical network behavior. This technique can identify new or recent 
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(zero-day) assaults. (iii) Hybrid methods combine signature-based and 
anomaly-based techniques [5]. 

The necessity to design a reliable and adaptable IDS arises from 
gradually upgrading intrusion types due to sophisticated attack ap
proaches. The growth of effective IDS faces numerous difficulties like 
false alarms, low detection rates and unbalanced datasets. Various 
methods have been developed to improve IDS using data mining and ML 
techniques. All of these technologies still have some challenges, making 
it possible for an attacker to violate the system. 

ML techniques process the dataset’s variables to predict the possible 
outcomes. However, the dataset mostly contains high-dimensional var
iables in which many variables are irrelevant to the task. The feature 
selection technique is the strategy employed by researchers to address 
the data dimensionality issue. The feature selection technique decreases 
processing time, aids in data comprehension, eliminates the “curse of 
dimensionality” effects and enhances the performance of predictive al
gorithms [6,7]. 

In this paper, we propose a novel based network intrusion detection 
system for the task of intrusion detection in large-scale computer net
works. The implementation includes data gathering, data preprocessing 
and attack classification. Attacks are detected based on the method of 
ensemble learning and Recurrent Neural Networks (RNNs). Ensemble 
methods and Long Short-Term Memory (LSTM) networks can effectively 
identify intrusions by learning complex patterns from the CICIDS2017 
dataset’s diverse, labeled network traffic. This approach helps these 
techniques overcome the challenges caused by network behavior vari
ations and noise. Random Forest (RF) excels at handling high- 
dimensional data and detecting anomalies, while boosting methods 
like Adaptive Boosting (AdaBoost) and Gradient Boost sequentially 
improve model performance, focusing on challenging instances within 
the dataset. Moreover, XGBoost enhances predictive power through 
regularization and parallel computation. The CICIDS2017 dataset offers 
a realistic and diverse collection of labeled network traffic, including 
both normal activity and various types of attacks like Denial of Service 
(DoS), Distributed Denial-of-Service (DDoS), and brute-force attempts. 
This allows them to test and improve Intrusion Detection Systems (IDS) 
classification that ultimately lead to stronger defenses against cyber 
threats. 

1.1. Motivation 

The frequency of cyberattacks has increased dramatically and inge
niously. One of the defenses against such attacks is the use of IDS. Thus, 
IDS needs to improve its performance by decreasing its false rates and 
increasing accuracy. Despite the development of numerous approaches, 
there are still problems that include the enormous dimensionality of 
data [8], its effects on computational complexity [9,10], and computa
tional time. 

In the ML approach, integrating efficient feature selection techniques 
has shown a successful approach to intrusion detection. The classifica
tion of network traffic data with imbalanced class distribution has 
shown a significant drawback in the performance of classifier algo
rithms. The goal of this study is to develop an IDS that improves the 
classification performance of imbalanced data. 

1.2. Contribution 

Although there has been a lot of research on IDS to address issues 
with accuracy, recall, precision, and false negative rates, the work 
continues to be challenging. Also, research on imbalanced datasets, and 
multi-class classification has been relatively sparse. This study aims to 
offer new methodologies for multi-class, and binary-class classification. 
The key contributions include  

● It reviews and analyses the Canadian Institute for Cybersecurity 
Intrusion Detection Scenario 2017 (CICIDS2017) dataset, recorded 
over 5 days.  

● Reducing the dimensionality of the CICIDS2017 dataset through the 
initiated Random Forest with High Correlation (RFHC) attributes.  

● It reduces the CICIDS2017 dataset variables from 81 to 34 while 
maintaining a high accuracy of 99.71 % in multi-class, and 99.40 % 
in binary classification.  

● Investigating best ML ensemble models RF, AdaBoost, XGBoost and 
Gradient Boost, and deep learning model LSTM with hyperparameter 
optimization to ensure the best results.  

● Conducting a comparative study between ensemble ML and deep 
learning models with Upsampled, and Un-Upsampled data to high
light the importance of imbalanced dataset problems and the ne
cessity of using UpSampling techniques for balancing the dataset.  

● Developing a knowledge base for cyber attackers 

Section 2 of this study describes related works, Section 3 describes 
day-wise data analytics of the dataset, and Section 4 describes the 
outline of the initiated architecture’s preprocessing, feature selection 
and classification algorithms. Section 5 introduces a brief description of 
the dataset, Section 6 introduces the experimental setup, and Section 7 
introduces results and performance evaluation followed by a conclusion 
and future scope in Section 8. 

2. Related works 

Recently, researchers focused on developing ML-based IDS using two 
well-known datasets: NSL-KDD, and CICIDS2017. The CICIDS2017 
dataset [11] is widely regarded as the ideal dataset for training IDS due 
to the realistic user behavior profiles it presents. This dataset encom
passes various protocols such as HTTP, HTTPS, FTP, SSH, and email at 
the application layer, reflecting common internet usage scenarios. 
Furthermore, CICIDS2017 incorporates contemporary attack patterns, 
ensuring relevance and up-to-date training data for IDS evaluation 
purposes. 

A Random Forest Regressor was employed by Sharafaldin et al. [12] 
to identify the ideal combination of attributes for identifying each attack 
family. The performance of these variables was then investigated using a 
variety of algorithms, including K-Nearest Neighbor (KNN), AdaBoost, 
Multi-Layer Perceptron (MLP), Naive Bayes, RF, Iterative Dichotomiser 
3 (ID3), and Quadratic Discriminant Analysis (QDA) and obtained the 
maximum precision of 0.98 with RF and ID3. Vijayan et al. [13] initiated 
an IDS that used multiple Support Vector Machines (SVM) for classifi
cation, and the Genetic Algorithm (GA) for feature selection. Their so
lution was built on an ordered linear combination of various SVM 
classifiers, where the classifiers were ranked according to the intensity 
of the attacks. The GA picked a set of variables to train each classifier to 
recognize a certain assault category. A denial-of-service IDS was initi
ated by the authors in [14] that used the Fisher Score technique for 
feature selection and SVM, KNN, and Decision Tree (DT) as the classi
fication algorithms. Models like SVM, KNN, and DT, their IDS had suc
cess rates of 99.7 %, 57.76 %, and 99 %, respectively. 

An approach called Data Dimensionality Reduction (DDR) in which 
XGBoost, SVM, Conditional Inference Trees (CTree), and Neural 
Network (Nnet) classifiers were used to evaluate their initiated strategy 
[15]. In this dataset, 36 characteristics were chosen, and the maximum 
accuracy of 98.93 % was obtained using XGBoost. However, the authors 
excluded Monday traffic which only contains benign traffic. This study 
has considered all the files of the dataset that represent different classes 
of network traffic and was able to achieve 99.91 % accuracy with 10 
classes with Upsampled data. An IDS based on feature selection and 
ensemble classifier was initiated by Zhou et al. [16]. For dimensionality 
reduction, the heuristic algorithms Correlation-based Feature Selection 
(CFS) and Bat Algorithm (BA) are also suggested. The ensemble tech
nique combines the C4.5 and RF algorithms to classify the intrusions 
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using Network Security Laboratory Knowledge Discovery in Databases 
(NSL-KDD), Aegean Wi-Fi Intrusion Dataset (AWID), and CICIDS2017 
datasets. Jaw and Wang [17] initiated a comprehensive IDS approach, a 
wrapper methodology based on GA which is a feature selection tech
nique, and K-means, One-Class SVM, Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN), and Expectation-Maximization 
(KODE). 

The authors in [18] initiated an architectural concept for Risk 
Assessment (RA) of the information system using ML algorithms using 
the CICIDS2017 dataset. In this study, ML methods for RA evaluation 
included KNN, Naive Bayes (NB), GradientBoost tree, RF, and DT. A total 
of 15 ML models examined the risk matrix for RA. A novel Feed-Forward 
Neural Network (FNN) is suggested for binary and multi-classification, 
using the Botnet of Things Internet of Things (BoT-IoT) dataset [19]. 
To identify DDoS assaults, Deep Sparse Autoencoder-based Framework 
(EDSA) was initiated [20]. A novel deep neural network model was 
initiated by Ahmad et al. [21] for recognizing assaults from both legit
imate and fraudulent sources. 

Gupta et al. [22] recommended ensemble algorithms for class 
imbalance in the CICIDS2017 dataset. The ensemble learner is applied in 
separating and differentiating between normal and suspect traffic 
network attacks. These attacks are fed into XGBoost, and RF to identify 
big attacks. RF predicted the classification with 92 % accuracy. All 
earlier works (refer to Table 1) need to be more consistent in the 

measured values but lacking in robustness and efficiency. Hence the 
initiated system increases the robustness by using advanced feature se
lection techniques on ensemble learning algorithms and deep learning 
models. Previous studies have encountered challenges with discrep
ancies in their performance metrics such as the accuracy reached 96 % 
[16], the False Alarm Rate (FAR) was 0.15 % [17], the accuracy was 
98.3 % but with a FAR of 0.14 %. To address this issue, the proposed 
system enhances robustness by implementing an advanced feature se
lection approach based on hybrid ensemble learning algorithms. The 
primary objective is to achieve both high accuracy and minimal FAR, 
ensuring improved performance across multiple evaluation metrics. The 
existing work does not include any HTTPS traffic in the generated 
dataset, which limits the applicability of the dataset for modern network 
security analysis [12]. 

3. Day-wise data analytics on the CICIDS2017 dataset 

The dataset is recorded over 5 days, namely Monday, Tuesday, 
Wednesday, Thursday, and Friday. Moreover, Thursday splits into a 
morning session and an afternoon session accordingly as web attacks 
and infiltration. Friday splits into three sessions i.e., morning, afternoon 
PortScan and DDoS. We considered a few important variables as shown 
in Table 2, which gives insight into the minimum and maximum values 
of the variables. 

Table 1 
Summary of previous work related to IDS.  

Feature Selection 
method 

Classification method Selected 
Variables Count 

Accuracy Precision Recall F1- 
Measure 

Dataset     

Random Forest 
Regressor [12] 

KNN      

54      −

0.96 0.96 0.96        

CICIDS2017 

RF 0.98 0.97 0.97 
ID3 0.98 0.98 0.98 
Adaboost 0.77 0.84 0.77 
MLP 0.77 0.83 0.76 
Naïve Bayes 0.88 0.04 0.04 
QDA 0.97 0.88 0.92 

Fisher Scoring [14] KNN 30 0.9997    

0.9985    0.9968 

0.9997 NSL-KDD, AWID, and CIC- 
IDS2017 

DDR [15] XGBoost 36 98.93    

− −

− CIC-IDS2017, UNSW- 
NB15, and NSL-KDD 

CFS_BA [16] Voting contains (C4.5, RF, ForestPA) 13 99.89  
− 99.9 

− CICIDS2017(Wed)  

HPS-KODE [17] 
Voting contains (K-means, One- class SVM, 
DBSCAN,and Maximization-Expectation, (KODE) 
)   8   99.9    

− 96.64   
−

BoT-IoT  

Deep neural network 
[22]  

XG Boost algorithm  41  99  − − −

NSL-KDD, CIDDS-001, 
and CICIDS2017 

38 96 − − −

78 92 − − −

Recursive feature 
elimination [40] 

RF Classifier 17 99.62 98 100 99.91 Credit card fraud Dataset 

Information Gain [40] 12 99.83 98 100 99.90 
Chi-Squared [40] 8 99.78 99 99 99.88 
Ensemble Features  

[40] 
7 99.6 100 99.4 99.6  

Table 2 
Descriptive statistics of selected features.  

Features Minimum Value (Bytes) Maximum Value (Bytes) Features Minimum Value (Bytes) Maximum Value (Bytes) 

Average Forward Segment Size 0 5940.857 Destination Port 0 65,535 
Average Backward Segment Size 0 5800.5 Total Length of Forward Packets 0 2,428,415 
Average Packet Size 0 3893.33 Total Length of Backward Packets 0 655,453,030 
Down/Up Ratio 0 156 Total Backward Packets 0 291,922 
Total Forward Packets 1 219,759  
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3.1. Monday’s data 

In Monday’s data, we see only pure Benign flow data i.e., the non- 
harmful data which is a very usual type of network flow we all come 
across. While looking into medians of Average Forward Segment Size and 
Average Backward Segment Size as shown in Fig. 1, the difference be
tween the medians infers that data flow is high from receiver to sender 
over sender to receiver. 

3.2. Tuesday’s data 

In Tuesday’s data, normal network flow i.e., Benign flow and attacks 
like File Transfer Protocol-Patator (FTP-Patator) and SecureShell- 
Patator (SSH-Patator) are considered. Patator is a brute-force 

password cracking tool that is designed to automatize the attempting of 
password combinations that can lead to intrusion of various systems. 
Here, FTP-Patator data is 1.78 %, SHH-Patator is 1.32 %, and the rest is 
Benign traffic as shown in Fig. 2. 

Fig. 3 shows the comparison between the Maximum Average Packet 
Size (maximum size of the data packet that was transmitted from sender 
to receiver) and the count of both attacks (the number of times the attack 
has occurred). Here, SSH-Patator has the Maximum Average Packet Size 
and lesser count of labels comparatively, and this shows SSH-Patator 
was carried in larger packets than FTP-Patator. 

3.3. Wednesday’s data 

In Wednesday’s data, a diversity of network traffic flow with the 
inclusion of Benign flow and attacks like DoS GoldenEye, DoS Hulk, DoS 
Slowhttptest, DoS Slowloris, and Heartbleed. Fig. 4 emphasizes the 
enormity of the types of network flows that have occurred, in terms of 
percentages. Heartbleed attack has occurred only 11 times whereas 
Benign flow has occurred 440,031 times, which makes it difficult to 
show Heartbleed in the pie chart since it’s negligible when compared. 

Fig. 5 shows the standard deviation in Total Forward Packets of all 
types of attacks and Benign flow data. From Fig. 4, we can infer that 
Heartbleed is the least recorded attack, but it has the major deviation in 
Total Forward Packets after Benign flow. It suggests that the Heartbleed 
attack stands out in terms of affecting forward packets though it is less 
frequent and shows unique patterns when compared. 

Fig. 6 shows the comparison between labels with the Sum of Total 
Forward Packets to see the movements of the types of traffic existing. It is 
observed that Benign, the usual traffic flow is major with a value of 
5242.17 K as the sum of the Total Forward Packets i.e., the major 
movement in the network flow, and Heartbleed having the least about 
28.2 K. It described that it is the least occurred movement in the network 
flow of Wednesday. 

Fig. 7 shows the maximum Down/Up ratio of types of network traffic 
from the data and we can see it’s mostly proportional to the number of 
times they have occurred. But in comparison with Fig. 6, DoS Slow
httptest has almost closer movement as Heartbleed has and, here we see 
that DoS Slowhttptest has more Down/Up ratio than DoS Hulk, which has 
occurred more than DoS Slowhttptest, we can infer that DoS Slow
httptest has a little different way of attacking that the others. 

3.4. Thursday’s data 

The data recorded on Thursday comprises two sessions such as 
morning and afternoon containing web attacks, and Infiltration attacks 
respectively. 

3.4.1. Thursday Morning session 
The Web Attacks in this dataset are Brute Force, Cross-site Scripting 

(XSS) and Structured Query Language (SQL) Injection. However, a 

Fig. 1. Comparison between midpoints of Total Backward and Forward 
Segment Size. 

Fig. 2. The concentration of labels in Tuesday’s data.  

Fig. 3. Comparison between Patators in terms of Average Packet Size.  
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major part of the data is the Benign flow traffic, i.e., the regular type of 
network flow, and the least is the SQL Injection as shown in Fig. 8. 

In Fig. 9, compare all the Web Attacks namely, SQL Injection, Brute 
Force, and XSS along with Benign flow in terms of the midpoint of the 
Total Length of Backward Packets along with Forward Packets. According 
to Fig. 8, SQL Injection had the least movement, but it has the highest 
midpoint of lengths of both the packets compared to either of the attacks 
or even Benign traffic data. This proves that it transmitted enormous 
amounts of data in a smaller number of packets. 

3.4.2. Thursday afternoon session 
Thursday’s Afternoon data contains two categories Infiltration attack 

and Benign flow data. It is observed that variance in forward packets and 
backward packets is more in Infiltration than in Benign, and that could 
imply diversity of destination, variability in packet sizes, and irregu
larities as shown in Fig. 10. Since Infiltration is a cyberattack that ac
cesses unauthorized entities to kill the system’s integrity and perform 

malicious activities leads to an irregularity. 

3.5. Friday’s data 

Morning and two-afternoon sessions with different intervals were 
recorded on Friday. Morning data consists of Benign flow traffic and Bot 
attacks. Two types of Afternoon data are considered which consist of a 
DDoS attack with Benign, and a PortScan attack with Benign traffic. 

3.5.1. Friday morning session 
Fig. 11 shows that the ratio of the Benign flow data of the midpoint of 

the Total Length of Backward Packets to the Forward Packets is 11:5, and 
for Bot attack data the ratio is 3:1 major part being the median of the 
Total Length of Backward Packets. It is inferred that higher backward 
packets tend to be longer compared to forward packets for Bot attacks. 

Fig. 4. Mixture of Network flows in Wednesday’s data.  

Fig. 5. Standard Deviation of Total Forward Packets in terms of Labels.  

Fig. 6. Labels versus Sum of Total Forward Packets.  
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3.5.2. Friday afternoon session 
It contains two different datasets with different attacks along with 

some benign data. One of the data consists of DDoS attacks and benign 
flow traffic. DDoS attempts to disturb the usual activities on the network 
by causing traffic to the attacker targets causing the unavailability of 

valid users. In Fig. 12, plots show the comparison between Total Forward 
and Backward Packets when it is a DDoS attack and Benign flow. It infers 
that the frequency of packets is higher in the Benign flow than DDoS 
attack because the Benign flow is the regular network flow. Usually, 
attacks send huge amounts of packets than Benign flow but in a smaller 
number of packets. 

Fig. 13 shows the comparison of the midpoint of the Down/Up ratio 
(ratio of the movement of downloading and uploading) with the Desti
nation Port. 

The Down/Up ratio of the PortScan attack range is 0–5000 which is 
highlighted in green, and the Benign flow range is 50,000–55,000 
highlighted in pink bars. It is inferred that at higher destination ports, 
there is more flow in Benign data, and less data flow in PortScan. 

4. Methodology 

The raw dataset contains a lot of variables in which many variables 
are not contributing to detect and classify the attacks. Hence, RFHC is 
initiated to identify the relevant variables that diminish the dataset 
dimensionality. This dimensionality reduction decreases the training 
time and storage space. The RFHC identifies the relevant and irrelevant 
variables using RF and correlation. The relevant variables of the dataset 
are fed into the ensemble learning algorithms to classify the input. 
Fig. 14 shows the initiated model’s block diagram. The initiated model is 
implemented in IDS to classify the attacks. 

4.1. CICIDS-2017 dataset pre-processing 

The process starts with preparing the data cleaning and transforming 
it to improve the analysis. Then, the feature selection selects the most 
relevant variables or attributes from the data to be used in the model. 
The dataset contains eight Comma-Separated Value (CSV) files that are 
concatenated into one data frame. The data frame contains 79 columns 
and 23,62,181 instances. The columns Bwd PSH Flags, Bwd URG Flags, 
Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg 
Bytes/Bulk, Bwd Avg Packets/Bulk, and Bwd Avg Bulk Rate were removed 
that contain no values as indicated by descriptive statistics. Finally, the 
resulting data frame had 71 columns. A few class labels were renamed 
that had unprintable characters. ‘Web Attack Brute Force’ was 

renamed into ‘Brute Force’, ’Web Attack XSS’ was renamed into 

‘XSS’ and ‘Web Attack SQL Injection’ was renamed into ‘SQL 
Injection’. 

Fig. 7. Maximum Down/Up ratio of Wednesday Labels.  

Fig. 8. The concentration of web attacks in a Tree Map.  

Fig. 9. Comparison between midpoints of Total Length of Backward and Forward Packets.  
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4.2. Feature selection using Random Forest and highly correlated pairs 
(RFHC) 

This RFHC method is used to reduce the dimensionality of data and 
focus on more important variables. It helps to reduce overfitting by 
selecting the most informative and relevant variables, which improves 
the model’s predictive performance. The RF classifier and correlation 
function are utilized to identify the relevant and irrelevant variables of 
the dataset. 

4.2.1. Identify feature’s importance using RF classifier 
The high-dimension dataset fed into the RF classifier with 70 vari

ables. Fig. 15 depicts the process of feature importance computation by 
RF algorithm. The RF starts with initial hyperparameters to detect the 
importance of the feature. The gridSearchCV method is applied to select 
the optimal parameters such as estimators, depth, entropy, leaf nodes 
count, etc., The gridSearchCV is configured with various number of 
estimators (10, 25, 50), criterion [gini, entropy, log loss function], and 
maximum depth (4, 5, 6, 7). The heuristic search selects the subset of 
variables using the importance score. The feature importance is calcu
lated using information gain and entropy. This process is repeated with 

Fig. 10. The variance of Total Forward Packets in terms of Labels.  

Fig. 11. Comparison between midpoints of Total Backward and For
ward Packets. 

Fig. 12. DDoS with Total Backward Packets versus Benign with Total Backward Packets.  
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Fig. 13. Ranges of Benign and PortScan.  

Fig. 14. Initiated Model Architecture.  

Fig 15. Identify feature importance value using RF classifier.  
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various combinations of parameters using a validation process. The 
optimal parameters selected by gridSearchCV are 10 estimators, and 
depth 5. The testing dataset is utilized to validate the RF classifier model 
(cv = 5) for optimizing the feature importance score calculation. Finally, 
the RF classifier results in the optimal subset of variables by dropping 
low importance variables of the dataset. 

The RF classifier identifies the high and low-importance variables 
using the score. This study applied the various threshold values in the 

Table 3 
Features dropped using RFC below the importance threshold 0.001.  

Bwd IAT Std Idle Mean Active Std ECE Flag Count 

SYN Flag Count Idle Min Idle Std RST Flag Count 
Fwd PSH Flags FIN Flag Count CWE Flag Count Idle Max 
Active Max Active Min Fwd URG Flags Active Mean  

Fig. 16. Variables importance calculation using RF Classifier.  

Fig 17. Feature selection by detecting highly correlated pairs.  
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range of 0.001–0.005 with step size 2. The optimal result is generated by 
threshold 0.001. Table 3 shows the result of the initial process identified 
16 irrelevant variables that were dropped using the RF classifier as they 
were below the threshold of 0.001. 

Fig. 16 depicts the variable’s importance identified by the RF clas
sifier. Avg Fwd Segment Size is the most important feature with a level 
importance of 0.068, followed by Fwd Packet Length Mean with a level 
importance of 0.063 and so on. Avg Fwd Segment Size is recognized as the 
most important feature by the RF classifier as it provides information 
about the average size of data segments being transmitted in the forward 
direction. 

4.2.2. Highly correlated variables identification 
The second process applied a threshold value greater than 0.95 to 

identify the highly correlated variables. Fig. 17 shows the process of 
variable selection using the correlation function. The result of the RF 
classifier is fed as input that is sorted in descending order. The corre
lation threshold value is set as 0.95 to identify the highly correlated 
variables. It identified the relevant variables that are less than the 0.95 
threshold. Also, low-important variables are identified from the sorted 
variables using the smaller index value. Finally, highly correlated vari
ables and low important variables are identified to drop from the 
dataset. It diminishes the dataset dimensionality. 

High correlation pairs are calculated using Pearson’s correlation.  

The correlation function results in the 20 irrelevant variables that were 
dropped using a high correlation of pairs as shown in Table 4. The 
optimal 34 variables are selected from the CICIDS-2017 dataset. This 
study applied two threshold values such as less than 0.001 and greater 
than 0.95. Initially, apply the below 0.001 threshold value to identify 
the irrelevant variables in the dataset. 

4.2.3. Sampling using SMOTE and RandomUnderSampler 
A new temporary column is introduced to distinguish between 

Normally and Attack types of traffic. Fig. 18 shows the distribution of 
Normal traffic, which outweighs the Attack traffic, and creates a class 
imbalance that affects the model of being biased toward the majority 
class. To avoid this bias, the downsampling technique 

Table 4 
Variables dropped using highly correlated pairs threshold ≥ 0.95.  

Bwd IAT Mean Fwd IAT Total Bwd Packets 
Length Std 

Packet Length 
Variance 

Flow Packets/s Total Backward 
Packets 

Total Fwd Packets Packet Length 
Mean 

Flow IAT Max Subflow Bwd 
Bytes 

Fwd Header 
Length.1 

Average Packet 
Size 

Fwd Packet 
Length Std 

Fwd Packet 
Length Mean 

Subflow Fwd 
Bytes 

Max Packet Length 

Subflow Bwd 
Packets 

Bwd Packet 
Length Max 

Bwd Packet 
Length Mean 

Total Length of 
Bwd Packets  
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RandomUnderSampler is introduced which helps to reduce the count of 
the majority label. 

RandomUnderSampler randomly selects a subset of instances from 
the majority class to achieve the desired ratio (0.85) to equal the number 
of majority and minority instances. Fig. 19 depicts the label distribution 
after applying downsampling where the Normally label count is down
sampled from 1.85 × 106 to 5× 105. 

ML algorithms converge faster during the backpropagation and 
perform better when variables are on a similar scale. Rescaling of the 
variables was performed using the maximum and minimum values of 
each feature. These variables are then normalized to scale them in the 
same range [0,1] using the following equation 

Xscaled =
X − Xmin

Xmax − Xmin
(1)  

Where Xmax is the maximum value of the feature, Xmin is the minimum 
value of the feature. 

The train-test split was performed with a training size of 0.7, and an 
additional held-out validation set was created to evaluate the neural 
networks’ predictions on the Upsampled training set with a training size 
of 0.8. The number of attack types in the target class is 10, and the 
distribution of each class is highly imbalanced as shown in Fig. 20. 

The count of Benign Flow data is 356,589 while XSS, Infiltration and 
SQL Injection are 464, 25 and 15 respectively. The class imbalance can 

Fig. 18. Label count before downsampling.  

Fig. 19. Label count after downsampling.  
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Fig. 20. Label count of traffic types before oversampling.  

Fig. 21. Label count of traffic types after oversampling.  
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lead to biased models that perform poorly in predicting the minority 
class. The Imbalance Ratio (IR) can be defined as 

ImbalanceRatio =
Majorityclassinstances
Minorityclassinstances

(2) 

High IR values in the data will result in classifiers being less accurate 
and reliable. 

An imbalanced class distribution problem arises due to the quantity 
of traffic and some sorts of anomalies as shown in Fig. 20. This provides 
a brief description of SMOTE for handling imbalanced datasets. 

SMOTE evens the distribution of the classes [23]. SMOTE generates 
synthetic samples from the minority class by interpolating new instances 
between existing instances of the class as illustrated in Fig. 21. SMOTE is 
only performed on train data to prevent data leakage on the test set. The 
minority class with respect to label count is increased to 3298, 3298, 
3298 for XSS, Infiltration and SQL Injection respectively. One-hot 
encoding is applied to transform categorical variables into numerical 
representations that can be easily understood for multi-class classifica
tion problems. Xu et al. [25], Xia et al. [26] and Li and Sun [27] used AI 
technique to elaborate the importance of heterogeneous traffic-agents 
using knowledge correction data-driven model, lightweight resem
blance detection for efficient post-deduplication delta compression and 
RBF neural network optimal segmentation algorithm in credit rating. 
General framework with quantifiable privacy preservation for destina
tion prediction in LBSs, semi-supervised probabilistic collaborative 
learning model for online review spammers detection and thin-film 
artificial intelligence transistors is examined by Jiang et al. [28], Wu 
et al. [29] and Xu and Shin [30]. Label encoding was performed to 
transform categorical variables into numerical representation for 
binary-class classification problems. Label encoding assigns one label as 
0 and the other label as 1, effectively converting the categorical variable 
into a binary numeric representation. Table 5 shows the description of 
dataset before and after applying proposed feature selection and sam
pling approaches. 

Table 5 
Summary of preprocessed dataset.  

Description Initial Dataset After feature reduction by RFHC After over sampling by SMOTE After Under Sampling Class 

Binary Multi-class 

Number of samples 2,362,181 2,362,181 673,038 936,073 936,073 673,038 
Number of features 79 34 34 34 34 34  

Fig. 22. Attention Mechanism.  

Fig. 23. Architectural diagram of attacks classifier.  
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4.3. Ensemble machine learning models 

4.3.1. Random Forest 
RF is constructed using a multitude of DTs [24]. Instead of depending 

on a single tree, it leverages predictions from all these trees to predict the 
ultimate outcome by considering which predictions assembled the 
highest number of votes. The RF is a bagging method that lowers the 

overall variance of these predictions by combining numerous learners 
(such as DTs) that are each fitted on distinct bootstrapped data and 
averaging their predictions. 

f̂ avg(x) =
1
B
∑B

b=1
f̂
b
(x) (3)  

Where B has bootstrapped samples of training data, and f̂
b 

represents 
model estimator. RF uses a feature bagging technique which offers the 
benefit of substantially reducing the correlation between each DT, 
enhancing its average prediction accuracy. Time complexity is O(nlogn). 
Train-time complexity takes O(t × u× nlogn), Test-time complexity takes 
O(t × logn), Where t represents the number of trees, and u denotes the 
number of variables after splitting. 

Hyperparameters and tuning parameters for RF are n_estimators(50), 
min_sample_leaf(20), n_jobs(− 1). n_estimators depict the number of trees 
in the forest. The higher number of trees, higher the precision of the 
outcome. However, this parameter makes the model slower. For 
hyperparameter tuning the model has been tested with range of n_esti
mators ranging from 10 to 50. min_sample_leaf depicts the minimum 
number of samples required to be at a leaf node. Smaller the value of 
min_sample_leaf, model is more vulnerable to detecting noise. n_jobs de
pict number of jobs the model can run parallelly, hence number of 
processors it can use. Hyperparameter range for min_sample_leaf ranges 
from 1 to 20 and for n_jobs 1 and − 1. 

4.3.2. AdaBoost 
AdaBoost follows a stage-wise approach, employing multiple weak 

learners to create strong learners. In the beginning, the model assigns 
equal weights to all samples, but subsequently, it assigns larger weights 
to points that were initially misclassified. In the subsequent models, 
points with higher weights are given greater importance, and the pro
cess continues until a reduction in error is achieved. The algorithm for 
AdaBoost follows  

Train-time complexity is O(n× p× ntrees), and Test-time complexity is 
O(p× ntrees), Where n denotes the data points, p represents number of 
variables, and ntrees denotes number of estimators. Hyperparameters and 
tuning parameters for AdaBoost are n_estimators(50), learning_rate(0.97). 
n_estimators is the same parameter used in RF and it ranges from 10 to 50 
for hyperparameter tuning. learning_rate controls the loss function used 
for calculating the weights of the model. It highly depends on n_esti
mators. The range of learning_rate ranges from 0.1 to 1 with step of 0.1. 

4.3.3. Gradient Boost 
Gradient Boosting is a powerful boosting technique that transforms 

multiple weak learners into strong ones. In each subsequent step, a 
model is trained using gradient descent to minimize the loss function of 
the previous model, which could be metrics like mean squared error or 
cross-entropy. The algorithm computes the gradient of the loss function 
with respect to the current ensemble’s predictions during each iteration. 
It then trains a new weak model to minimize this gradient. The ensemble 
is updated with the predictions from the new model, and this process 
repeats until a stopping condition is met. 

L(f ) =
∑N

i=1
L(yi, f (xi)) (4)  

Where f(xi) is the function f(x) that maps the input variables X to the 
target variables y. 

gim = −

[
∂L(yi, f (xi)

∂f (xi)

]

f (xi)=fm− 1(xi)
(5) 
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Where gim is the gradient of loss function L(f), Train-time complexity 
takes O(M× n× d× logn), and Test-time complexity takes O(Mlogn), M,

nandd denotes the number of trees, samples, and height of the tree 
respectively. Hyperparameters and tuning parameters for Gradient 
Boost are learning_rate(0.69), n_estimators(40), min_sample_split(0.2), 
min_sample_leaf(0.1) and max_features(34). min_sample_split defines min
imum number of observations which are required for splitting and 
ranges from 0.1 to 1. These parameters generally used to control over- 
fitting. min_sample_leaf defines the minimum samples required in a 
leaf. This parameter should have a low value for imbalanced class 
problem as minority class tree would have shorter length trees. It ranges 
from 0.1 to 0.5. max_features define number of features to consider while 
searching for the split. It ranges from 5 to 34. 

4.3.4. XGBoost 
XGBoost is a distributed boosting library designed for rapid and 

scalable ML model development. It utilizes ensemble learning to 
combine predictions from multiple weak models, creating a more 
powerful prediction. XGBoost places considerable emphasis on the 
importance of weights. Before being input into the DT for outcome 
prediction, each independent variable is assigned a weight. Variables 
that were incorrectly predicted by the tree are given greater weight 
before being used in the subsequent DT. These individual classifiers or 
predictors are then aggregated to generate a strong and precise model. 
Mathematically, write the model in the form: 

ŷi =
∑K

k=1
fk(xi), fk ∈ F (6)  

Where K is the number of trees, f is the functional space of F, and F is the 
set of possible decision trees. Train-time complexity for XGBoost takes 
O(t × d× x× logn), and test-time complexity takes O(td). t represents the 
number of trees, d denotes the height of the tree, x indicates the number 
of non-missing entries. Hyperparameters and tuning parameters for 
XGBoost are eta (0.05), max_depth(5), subsample(0.6), min_child_weight 
(8). min_child_weight defines minimum sum of weights required by a leaf 
node. It used to control over-fitting hence it should be tuned using cross- 
validation and it ranges from 1 to 13. eta is analogues to learning_rate 
meaning, it shrinks the feature weight to make boosting process more 
conservative and it ranges from 0 to 1 for hyperparameter tuning. sub
sample defines the fraction of observations to be randomly sampled for 
each tree. Subsampling will only occur in every iteration. It ranges from 
0 to 1. 

4.4. LSTM with attention layer 

The looping feedback connections and feedforward connections in 
LSTM architecture help the model retain knowledge over time. In 
addition to learning from both long and short dependencies without a 
loose or excessive buildup of data. LSTM is also capable of remembering 
past events and making predictions about future events. In order to 
regulate the information flow in each cell of the architecture, LSTM 
employs a number of gates, including forget gate, input gate, and output 
gate [31,32]. 

The forget gate’s output is designated as Ft, while its weights and bias 
parameters are WF, UF and bF. Likewise, WI, UI and bI are the input gate 
weight and bias, and It is the input gate’s output. These weight and bias 
parameters are optimized during training. At time t, the input and hid
den vectors are respectively Xt and ht. 

Ft = σ(WFXt + UFht− 1 + bF) (7)  

It= σ(WIXt +UIht− 1 + bI) (8)  

Ct stores the value that was determined by the output of an input and 
forget gate along with the current value of the input. These values are 

used to calculate the output and hidden states. 

Ot = σ(WOXt + UOht− 1 + bO) (9)  

Ct = Ft ⊙ Ct− 1 + It ⊙ tanh(WCXt + UCht− 1 + bC) (10)  

ht = Ot ⊙ tanh(Ct) (11)  

Ot = f (Woht + bo) (12) 

The intuition behind backpropagation is we compute the gradients of 
the final loss with respect to the weights of the network and during 
optimization, moving along this direction, and updating the weights, 
minimizing the loss. 

dE
dWxo

= Edelta*tanh(ct)*sigmoid(z0)*(1 − sigmoid(z0) )*xt (13)  

dE
dWho

= Edelta*tanh(ct)*sigmoid(z0)*(1 − sigmoid(z0) )*ht− 1 (14)  

dE
dbo

= Edelta*tanh(ct)*sigmoid(z0)*(1 − sigmoid(z0) ) (15)  

dE
dWxf

= Edelta*o*
(
1 − tanh2(ct)

)
*ct− 1*sigmoid

(
zf
)
*
(
1 − sigmoid

(
zf
) )

*xt

(16)  

dE
dWhf

= Edelta*o*
(
1 − tanh2(ct)

)
*ct− 1*sigmoid

(
zf
)
*
(
1 − sigmoid

(
zf
) )

*ht− 1

(17)  

dE
db0

= Edelta*o*
(
1 − tanh2(ct)

)
*ct− 1*sigmoid

(
zf
)
*
(
1 − sigmoid

(
zf
) )

(18)  

dE
dWxi

= Edelta*o*
(
1 − tanh2(ct)

)
*g*sigmoid(zi)*(1 − sigmoid(zi) )*xt (19)  

dE
dWhi

= Edelta*o*
(
1 − tanh2(ct)

)
*g*sigmoid(zi)*(1 − sigmoid(zi) )*ht− 1

(20)  

dE
dbi

= Edelta*o*
(
1 − tanh2(ct)

)
*g*sigmoid(zi)*(1 − sigmoid(zi) ) (21)  

dE
dWxg

= Edelta*o*
(
1 − tanh2(ct)

)
*i*

(
1 − tanh2( zg

) )
*xt (22)  

dE
dWhg

= Edelta*o*
(
1 − tanh2(ct)

)
*i*

(
1 − tanh2( zg

) )
*ht− 1 (23)  

dE
dbg

= Edelta*o*
(
1 − tanh2(ct)

)
*i*

(
1 − tanh2( zg

) )
(24)  

Where Wxi, Wxg, bi, Whj, Wg, bg are the input gates, Wxf , Whf , bf are forget 
gates and Wxo, Who, bo are output gates, Edelta is dE

dht
. The idea of the 

attention mechanism is an imitation of the human ability to concentrate 
on different aspects of information when processing enormous amounts 
of information. The foundation of the attention mechanism was brought 
into existence due to the possible malfunction that can occur when 
models suffer from information overload caused by large datasets. When 
large amounts of data are taken as input, this mechanism works on 
differentiating the data based on the importance given i.e., attention 
score, and even traces out the credible data in order to improve the ef
ficiency and accuracy of the model. The attention mechanism is also 
used for the generation process of the hidden state matrix H in the LSTM 
framework. 

The attention mechanism sorts the variables of the CICIDS 2017 
dataset through the LSTM model as shown in Fig. 22. For deriving the 
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important variables in LSTM, context vector is used for selecting 
important variables within each network flow. To do this, calculate 
attention weights for each feature of the network flow data. These 
weights decide the importance of each feature in the context of attack 
detection. The below-mentioned formula gives us the context vector Si, 
which is a creation of a set of the weighted sum of the annotations, 
where each annotation is weight-based on its significance to deriving 
important variables, and where T represents the number of variables of 
the data. 

Ci =
∑T

i=1
a(t,T).ht (25) 

The weights a(t,T) are calculated using SoftMax function as given 
below: 

eij = α
(
hj
)

(26)  

a(t,T) = softmax
(
eij
)

(27)  

Where eij represents the output score which will define the importance of 
the variables depending on the function α that attempts to capture the 
arrangement between i and j. a(t,T) represents the attention weights 
assigned to different elements in the input variables while calculating 
the context vector. The three hidden layers of the implemented LSTM 
model include 64, 64 and 128 neurons respectively with an attention 
layer. The activation function for the hidden layers is Rectified Linear 
Unit (ReLU), and the activation function for the output layer is SoftMax. 
The categorical cross-entropy function and the binary cross-entropy 
function were used to fit model two’s loss function for categorical 
data, and binary data respectively. LSTM method likely stems from its 
ability to handle long-term dependencies to mitigate the vanishing 
gradient problem, suitable for sequential data processing, simplicity, 
interpretability, and empirical success in similar tasks. These factors 
collectively make LSTM a practical and reliable choice for modelling 
intrusion detection scenarios. 

Hyperparameters and tuning parameters for LSTM are Optimizer, loss 
function, batch_size(32), epochs(10), and dropout(0.2). Adam optimizer 
with learning_rate of 0.001 is chosen as it better handle the complex 
training dynamics of RNNs. Categorical_crossentropy is chosen as the loss 
function for multi-class classification and binary_crossentropy for binary- 
class classification. batch_size defines the number of samples to work 
before the internal parameters are updated. For hyperparameter tuning 
different batch_size values were experimented like 64, 128 and 256. 
epochs defines the number of complete iterations of dataset should run. 
This has to be carefully validated with validation accuracy and training 
accuracy. To find the right trade-off between over-fitting and under- 
fitting. dropout helps in tackling over-fitting problems by bypassing 
randomly selected neurons, thereby reducing the sensitivity to specific 
weight of a neuron. 

4.4.1. Classification of attacks using ensemble learners and LSTM 
After preprocessing of CICIDS2017 dataset, handle the class imbal

ance for multi-class classification and binary-class classification. Then, 
initialize all the models (RF, AdaBoost, XGBoost, GradientBoost and 
LSTM) with initial parameters. Multiple parameter combinations are 
selected and train the models to get the best-optimized result. The best 
parameters are picked using Grid Search, and K-fold cross-validation 
(cv). The Grid Search approach tries different combinations of hyper
parameters for training the model, and selects the best combination 
based on a scoring metric. It creates a grid of all possible values for each 
hyperparameter and evaluates the model for each combination using 
cross-validation. The combination that gives the highest score is chosen 
as the best one. K-fold cv is a method that splits the data into K equal 
parts (folds). It uses one-fold as the test set, and the rest as the training 
set. This process is repeated K times, each time using a different fold as 

Table 6 
CICIDS-2017 dataset description.  

File name Traffic types Number of 
records 

Monday-WorkingHours.pcap_ISCX. 
csv 

Benign 529,918  

Tuesday-WorkingHours.pcap_ISCX. 
csv 

Benign 432,074 
SSH-Patator 5,897 
FTP-Patator 7,938  

Wednesday-WorkingHours. 
pcap_ISCX.csv 

Benign 440,031 
DoS Hulk 231,073 
DoS GoldenEye 10,293 
DoS Slowloris 5,796 
DoS Slowhttptest 5,499 
Heartbleed 11 

Thursday-WorkingHours- 
Morning-WebAttacks.pcap_ISCX. 
csv 

Benign 168,186 
Web Attack-Brute 
Force 

1,507 

Web Attack-SQL 
Injection 

21 

Thursday-WorkingHours- 
Afternoon-Infiltration.pcap_ISCX. 
csv 

Web Attack-XSS 652 
Benign 288,566 
Infiltration 36 

Friday-WorkingHours- 
Morning.pcap_ISCX.csv 

Benign 189,067 
Bot 1,966 

Friday-WorkingHours- 
Afternoon-PortScan.pcap_ISCX.csv 

Benign 127,537 
PortScan 158,930 

Friday-WorkingHours- 
Afternoon-DDos.pcap_ISCX.csv 

Benign 97,718 
DDoS 128,027 

Total samples  2,830,743  

Table 7 
Performance in multi-class classification.  

The color only represents the difference between the data before upsampling and after upsampling. 
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the test set as shown in Fig. 23. The average score of the K iterations is 
used as the final score of the model. K-fold cv is useful for reducing the 
variance of the model that avoids overfitting or underfitting. It also al
lows the model to use all the data for both training and testing, unlike a 
simple train-test split. The best parameters are used for training the 
model and followed by evaluation with the test set. 

4.5. Data balancing using sampling 

The preprocessed training data does not consist of balanced samples 
with respect to attacks categories. Hence, this study initiated the SMOTE 
method to UpSample the training data. Consequently, upsampled data 
fed into the ensemble classifiers, and LSTM with attention mechanism to 

detect the attacks with multi-class categories. Similarly, downsampling 
is applied to the training dataset that results the subset. This down
sampled dataset fed into the classifiers that classified the data with bi
nary class categories either attack or normal. 

5. Dataset description 

The real-world network traffic CICIDS-2017 dataset from the Infor
mation Security Center for Excellence (ISCX) Consortium is used in this 
research work. Eight traffic monitoring sessions have been considered as 
a CSV file, constitute MachineLearningCSV. This file contains both 
abnormal traffic known as “Attacks” traffic, and typical traffic is 
“Benign” traffic. In addition to regular and benign traffic, this dataset 

Table 8 
Performance of XGBoost classifier.  

The color only represents the difference between the data before upsampling and after upsampling. 

Fig. 24. Comparison of models with un-upsampled data for multi-class.  
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contains 14 different forms of attack traffic as shown in Table 6. The 
DDoS, DoS Hulk, Denial of Effect (DoE) GoldenEye, and Heartbleed 
attack types must be detected using the Bwd Packet Length Std feature. 
Regular traffic must be recognized using the Min Bwd Package Length 
feature, and Fwd Average Package Length variables [33]. 

6. Experimental tools 

This study intends to develop an IDS classifier with higher accuracy, 
higher dependability, fewer false alarms, and fewer false negatives. The 
initiated method implies the RFHC technique to select only those vari
ables that affect the results. The initiated system is implemented using 

Fig. 25. Comparison of models with UpSampled data for multi-class.  

Fig. 26. Time to construct and evaluate models for multi-class classification.  

Table 9 
Performance in binary class classification.  

The color only represents the difference between the data before upsampling and after upsampling. 
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the CICIDS-2017 dataset of Upsampled, and Un-Upsampled data to test 
multi-class and binary-class classification. The experimentation is car
ried out on a laptop with a 10th generation Core i5 processor and 12 GB 
of RAM. This model makes use of a number of Sklearn packages from 
Python 3.11, including RFHC selection and Classifier from the Ensemble 
package. Refs. [34–37] highlights some applications of fake news 
detection and neural network based simulations. 

6.1. Metrics for evaluating models 

Intrusion detection performance can be evaluated through well- 
known metrics like False Positive Rate (FPR), True Positive Rate 
(TPR,) F1-measure and accuracy [38,39]. True Positive (TP) defines the 
model correctly predicts positive class input data as positive class. False 
Positive (FP) represents the negative data is predicted wrongly as 

Table 10 
Performance of RF classifier.  

The color only represents the difference between the data before upsampling and after upsampling. 

Fig. 27. Comparison of models with Un-UpSampled data for class binary.  

Fig. 28. Comparison of models with UpSampled data for binary class.  
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positive output. True Negative (TN) represents the negative class is 
correctly predicted as negative output. False Negative (FN) represents 
the positive class is predicted as negative class correctly. Precision and 
recall are used together to give a complete representation of the model’s 
ability to make correct predictions. 

Accuracy =
TP + TN

TP + TN + FP + FN
(28)  

F1 score =
(Precision*Recall)*2

Precision + Recall
(29) 

In the field of IDS, where defending cyber threats is paramount, the 
choice of evaluation metrics is critical. While accuracy measures overall 
correctness, it weakens the presence of class imbalances common in IDS 
datasets. However the F1 score plays a pivotal role in the metrics by 
balancing precision and recall. Unlike accuracy, the F1 score offers 
nuanced insight into the system’s efficacy in identifying attacks while 
capturing their full spectrum. By considering false positives and false 
negatives, it comprehensively assesses IDS performance, ensuring ac
curate threat detection while minimizing the risk of overlooking genuine 
attacks. Thus, relying on accuracy and F1 score underscores the need for 

a balanced approach, essential for robust cybersecurity defenses. 

7. Results and discussion 

7.1. Multi-class classification 

This study contributes to benchmarking five classification algo
rithms. It focuses on comparing them with UpSampled and Un- 
UpSampled data. Table 7 shows the classifiers with UpSampled data 
outperform the classifiers with Un-UpSampled data. XGBoost shows a 
significant and efficient growth in all the metrics after applying SMOTE. 
Table 7 displays the outcomes obtained with 34 variables prior to the 
application of UpSampling, and 34 variables after UpSampling has been 
applied. UpSampling is employed to create a balanced dataset. 

Comparing Infiltration, SQL Injection and XSS class from Table 8, it is 
inferred that UpSampling technique has helped XGBoost with unbal
anced dataset problem, and increasing the F1-score, Recall and Preci
sion. AdaBoost and GradientBoost models perform poorly with Up- 
Sampling data as shown in Table 8. Focusing on minority instances, 
AdaBoost already takes care of it by giving them larger weights. Addi
tionally, including the minority class in UpSampling, can place an undue 
focus on those cases, which could result in an uneven boost and even 
lower overall performance. In GradientBoost, the underlying patterns in 
the data cannot be detected by weak learners therefore increasing their 
prominence through UpSampling may not result in meaningful im
provements. The complexity and depth of the trees can influence their 
capacity to successfully model the data. LSTM outperforms other models 
in Un-UpSampled multi-class classification as shown in Fig. 24. LSTM 
networks are inherently robust to imbalanced datasets and can effec
tively assign appropriate weights to different classes during training, 
mitigating the need for UpSampling or downsampling techniques. 
Furthermore, their hierarchical representation learning enables them to 
capture both low-level and high-level features in the input sequences, 
allowing for the effective capture of complex patterns and relationships 
in network traffic data compared to traditional ML algorithms that 
typically rely on shallow representations of data. 

Fig. 25 illustrates the performance of classifiers using SMOTE based 
upsampled dataset. XGBoost emerges as the best algorithm in multi-class 
regarding accuracy, precision and recall. The SMOTE based UpSampling 
process generated the subset of samples with balanced category of each 
class in the dataset. XGBoost constructs decision trees sequentially, 
honing in on errors from preceding trees to refine subsequent ones. This 
iterative process of refinement often yields superior performance, 
particularly in scenarios with imbalanced datasets. By integrating 
SMOTE, XGBoost adeptly addresses class imbalance concerns by syn
thesizing new minority class samples, thereby enhancing its ability to 
learn from both minority and majority class instances. Furthermore, 
XGBoost’s ensemble of decision trees, coupled with sophisticated regu
larization techniques and novel split-finding algorithms, contributes to 
its superior model performance. Regularization techniques such as 
shrinkage and column subsampling mitigate overfitting while advanced 
optimization techniques facilitate the efficient search for optimal tree 
structures, enhancing the model’s generalization capabilities. Addi
tionally, XGBoost’s proficiency in capturing complex, non-linear re
lationships between features and target variables are attributed to its 
capacity to fit decision trees with multiple splits. 

The evaluation of model performance, concerning the time required 
for both model construction and testing, is visually presented in Fig. 26. 
The LSTM with attention mechanism consumes more time than other 
algorithms due to more parameters involving in the classification and 
due to the number of epochs. In ensemble learning classifiers, XGBoost 
takes more training time than other algorithms. However, XGBoost 
classifier provides better performance than other classifiers. 

Fig. 29. Performance of upsampled data for binary class.  

Fig. 30. Performance of un-upsampled data for binary class.  
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7.2. Binary classification 

This study also considers binary classification to categorize the traffic 
data as either normal or attack. In multi-classification, different attacks 
categorized from the abnormal traffic. 

However, binary classification is applied to classify the traffic based 
on its behavior either attack or normal. It is not focusing on the various 
categories of attacks. Models trained on UpSampled data outperform the 
ones with Un-UpSampled data as shown in Table 9. Table 10 depicts the 
results with 34 variables (before applying UpSampling), and after 
applying UpSampling. 

Comparing Table 10 showed the UpSampling technique makes RF 
model to better classify on Traffic data. 

GradientBoost outperforms other models in Un-UpSampled binary- 
class classification as shown in Fig. 27. GradientBoost is consistent with 
accuracy, precision, and recall. GradientBoost corrects the errors of the 
previously trained models. GradientBoost achieves higher precision by 
effectively classifying positive instances and minimizing false positives 
and achieves higher recall by correctly classifying most of the positive 
instances, thus minimizing false negatives. 

RF emerges as the better algorithm in binary class regarding accu
racy, precision and recall as shown in Fig. 28. The boosting ensemble 
learning models also perform slightly lower than the bagging ensemble 
learner. The boosting ensemble learners used more parameters and de
cision trees to classify the dataset. 

Figs. 29, 30 shows the training epoch curve of the LSTM model with 
Upsampled and Un-UpSampled data respectively. In Fig. 29, the line 
graph represents the training and validation accuracy of a LSTM over 10 
epochs. The blue line, representing the training accuracy, starts at 
around 0.98 and increases to around 0.9975 over 10 epochs. 

On 2nd epoch, the training accuracy reaches at 0.9932. The red line, 
representing the validation accuracy, starts at around 0.9925 and in
creases to around 0.995 over the same period. At epoch 9, training and 
validation accuracy are same (0.997) This suggests that the model is 
learning effectively from the training data and generalizing well to the 
validation data. In Fig. 30, validation accuracy is 0.9983, whereas 
training accuracy is 0.9973, hence validation accuracy is higher than 
training accuracy. At epoch 9, training and validation accuracies are 
same (0.9975). This indicates the problem of data imbalance. The 
training accuracy reflects the true performance of the model, where 

Fig. 31. Time to build and test models for binary-class classification.  

Table 11 
Comparison of CICIDS-related studies and initiated framework.  

Feature Selection 
method 

Classification method Selected 
Variables Count 

Accuracy Precision Recall F1- 
Measure 

Dataset 

Random Forest 
Regressor [12] 

KNN 54 − 0.96 0.96 0.96 CICIDS2017 
RF 0.98 0.97 0.97 
ID3 0.98 0.98 0.98 
Adaboost 0.77 0.84 0.77 
MLP 0.77 0.83 0.76 
Naïve Bayes 0.88 0.04 0.04 
QDA 0.97 0.88 0.92 

Fisher Scoring [14] KNN 30 0.9997 0.9985 0.9968 0.9997 NSL-KDD, AWID, and CIC- 
IDS2017 

DDR [15] XGBoost 36 98.93 − − − CIC-IDS2017, UNSW- 
NB15, and NSL-KDD 

CFS_BA [16] Voting contains (C4.5, RF, ForestPA) 13 99.89 − 99.9 − CICIDS2017(Wed) 
HPS-KODE [17] Voting contains (K-means, One- class SVM, DBSCAN, 

and Maximization-Expectation, (KODE)) 
8 99.9 − 96.64 − BoT-IoT 

Deep neural 
network [22] 

XG Boost algorithm 41 99 − − − NSL-KDD, CIDDS-001, and 
CICIDS2017 38 96 − − −

78 92 − − −

Proposed RFHC XGBoost (multi-class) 34 99.7 98.7 99.5 99.2 CICIDS2017 
RF (binary class) 34 99.4 99.4 99.2 99.6  
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validation accuracy is boosted by performing on minority classes. 
The performance evaluation of models in terms of time to build and 

test the model is presented for binary-class classification as shown in 
Fig. 31. The LSTM with attention mechanism consumes more time than 
other algorithms due to more parameters involving in the classification 
and due to the number of epochs. 

Table 11 provides a detailed comparison between our initiated 
framework and prior studies. Given the data imbalance in the 
CICIDS2017 dataset, we employed the F1-Measure for a thorough 
assessment and comparison. As depicted in Table 11, our methodology 
surpasses previous research in both accuracy and F1-Measure 
performance. 

8. Conclusion and future scope 

Existing IDSs are still ineffective by some standards despite prior 
attempts to improve their effectiveness by utilizing different ML tech
niques. This study initiated a unique IDS approach using hybrid tech
niques based on the intended FS for coping with unbalanced and high- 
dimensional traffic. To obtain the best feature subset, the RFHC strat
egy is applied that selected. 

34 variables. The suggested model’s final experimental findings use 
the CICIDS2017 dataset which demonstrated an accuracy of 99.40 %, a 
recall of 99.20 %, a precision of 99.41 % and an F1-measure of 99.62 % 
for binary-class classification. The model demonstrated an accuracy of 
99.71 %, a recall of 99.50 %, a precision of 98.70 % and an F1-measure 
of 99.20 % for multi-class classification. 

Despite the fact that deep learning models are more accurate, our 
future plans include creating a hybrid deep learning model for IoT 
intrusion detection that is more accurate at predicting attacks on real- 
time data. Deep learning models, particularly Convolutional Neural 
Networks (CNNs) and RNNs such as LSTMs, have demonstrated 
remarkable performance in various domains, including intrusion 
detection. These models are capable of learning intricate patterns and 
representations directly from raw data, making them well-suited for 
capturing complex relationships in IoT network traffic. However, deep 
learning models may not always generalize well to new, unseen data, 
especially in scenarios with limited labeled training data or in the 
presence of imbalanced classes. By integrating traditional ML techniques 
such as ensemble learning, feature selection, or dimensionality reduc
tion with deep learning architectures, it’s possible to enhance the 
model’s robustness and generalization ability. 

More sophisticated feature selection algorithms are required as high- 
dimensional datasets can be difficult to work with and can result in 
overfitting or increased processing complexity. 
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