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ABSTRACT

Reverse osmosis desalination facilities operating on microgrids (MGs) powered by renewable energy are becoming more significant. A leader-

follower structured optimization method underlies the suggested algorithm. The desalination plant is divided into components, each of which

can be operated separately as needed. MGs are becoming an important part of smart grids, which incorporate distributed renewable energy

sources (RESs), energy storage devices, and load control strategies. This research proposes novel techniques in economic saline water treat-

ment based on MG architecture integrated with a renewable energy systems. This study offers an optimization framework to simultaneously

optimize saline as well as freshwater water sources, decentralized renewable and conventional energy sources to operate water-energy sys-

tems economically and efficiently. The radial Boltzmann basis machine is used to analyse the salinity of water. Data on water salinity were

used to conduct the experimental analysis, which was evaluated for accuracy, precision, recall, and specificity as well as computational cost

and kappa coefficient. The proposed method achieved 88% accuracy, 65% precision, 59% recall, 65% specificity, 59% computational cost, and

51% kappa coefficient.
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HIGHLIGHTS

• Novel method in economic saline water treatment based on microgrid architecture integrated with a renewable energy system.

• An effective and cost-effective water-energy system can be operated by using an optimization framework that simultaneously improves

salty and freshwater water sources as well as decentralized renewable and conventional energy sources.

• Salinity of water is analysed using a radial Boltzmann basis machine.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

The growing demand from other important industries like agriculture and manufacturing places additional emphasis on the

availability of water for home use. Water use in the agricultural sector alone might increase by almost 19% by 2050 (Dokhani
et al. 2022). The demand for water on a global scale is increasing by 1% annually and may reach 120–130% of the current
demand in 2050. On the other hand, due to climatic change and other factors, freshwater sources are diminishing (Jabari

et al. 2022). Freshwater generation appears to be a solution to the rising water demand. Desalination of plentiful seawater
has become a viable technique for producing freshwater. Around 1% of the world’s population currently receives water
from desalination plants, and more plants are being built every year (Sui et al. 2021). Due to its reduced energy usage,

which ranges from 3 to 6 kWh/m3, reverse osmosis (RO) of membrane process is the most favoured approach for desalina-
tion. It should not come as a surprise that almost 60% of the desalination plants in the world employ RO technology. Reverse
osmosis desalination (ROD) facilities have historically operated with traditional generators, which are polluting. Desalination

utilizing renewable energy is becoming more and more important as environmental concerns resulting from pollution grow.
The power generated by renewable sources is sporadic. To synchronize them, conventional generators and energy storage
(ES) are typically also used. As a result, use of renewable energy resources (RERs) to generate electricity has increased. In
comparison to conventional or traditional power sources, the power produced by RERs is thought to be more sustainable,

affordable, and ecologically beneficial. When more than one renewable resource is included in generation mix, according
to scientists who are working to integrate it into the network, there are various benefits, including a rise in power generation
efficiency (Dong et al. 2022). As a result, it has been widely predicted that most nations’ electricity will be produced by hybrid

renewable energy integrated systems. This is also because a large portion of the current electricity system relies on environ-
mentally harmful and rapidly diminishing fossil fuels (coal). When it comes to allowing for acceptable voltage variation and
system frequency in any particular electrical network, integrating RERs poses a variety of issues. Currently, SG technology
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offers a variety of approaches to address problems caused by the instability and fluctuation of RERs. Installation of a micro-

grid system (MG) is a crucial methodology that aids in the efficient usage of RERs. The goal of this strategy is to maximize
system performance despite a variety of operational problems by establishing a peer-to-peer operation mode for electrical sys-
tems. Numerous RERs difficulties are thought to be resolved by energy storage systems (ESS). Energy storage acts as a

dampening mechanism between energy demand and generation in the urban sector, where energy demand needs as well
as RERs implementation issues are a concern (Hemmati et al. 2021).

The contribution of this research is as follows:

1. To propose a novel method in economic saline water treatment based on MG architecture integrated with a renewable
energy system.

2. An effective and cost-effective water-energy system can be operated by using an optimization framework that simul-

taneously improves salty and freshwater water sources as well as decentralized renewable and conventional energy
sources.

3. Salinity of water is analysed using a radial Boltzmann basis machine.

2. RELATED WORKS

The literature contains several water and energy co-optimization models where costs, energy use, or load demands of water
systems were reduced (Prathapaneni & Detroja 2020). All models, however, did not account for desalination procedures and

assumed that freshwater was the only supply of water. A desalination plant’s ability to operate economically depends
on energy reduction. The high electrical power requirements of desalination systems are one of their biggest obstacles. In
Alzahrani et al. (2022), the economic and reliability concepts of the MGs are investigated. In He et al. (2022), the optimal
placement of distributed generation (DG) resources is proposed, and suggested strategies are assessed. The increase in use

of combined heat and power (CHP) DGs is also described in Vitale et al. (2021), in which it is objected to improving the
reliability of MGs. The short-term generation scheduling for MGs is also evaluated in Wang et al. (2022). In Harish et al.
(2022), a multi-objective optimization is conducted to deal with the energy management of MGs while the economic and

environmental restrictions are taken into account. Several techniques, including physical models, machine learning (ML),
and (more recently) deep learning (DL), can be used to forecast (Jalilian et al. 2022). They are used, for instance, to forecast
and optimize energy use in smart MGs, anticipate energy use in the production of wheat, enhance health services, boost wire-

less network performance, manage floods, and forecast hydrogen production. Energy management of an MG made up of
photovoltaic (PV), wind turbine (WT), and electrical storage system was resolved by the authors in Moazeni & Khazaei
(2021) while satisfying the constraints of the MG. In Cruz et al. (2019), the uncertainty of solar, as well as wind power

units, was taken into account when solving energy management of an MG. Latin hypercube sampling is utilized to
manage uncertainty (Wu et al. 2021). The performance of failures in an MG was studied by Jumare (2020) and Okampo
et al. (2022) under both dynamic and static loads, such as static power loads, static impedance loads, and current static
loads. The major objective of this work was to investigate how the kind of load affected the fault performance of the inde-

pendent MG using the WT as an energy resource. Mazzoni et al. (2019), Ogbonnaya et al. (2021), and Shayan et al.
(2022) provided a thorough analysis of hybrid renewable MG optimization strategies.

3. SYSTEM MODEL

This section discusses novel methods in economic saline water treatment based on MG architecture integrated with renew-

able energy systems. To operate water-energy system economically and efficiently, this study provides an optimization
framework to simultaneously optimize salty and freshwater water sources as well as decentralized renewable and convention-
al energy sources. Utilizing a deep radial Boltzmann basis machine, salinity of water is examined. ES devices, loads, and
distributed power sources typically make up MG. More and more DRE will be adopted as renewable energy technology

advances. One of the efficient approaches to DRE linked to the electrical grid is MG.
Figure 1 depicts an example of a typical renewable energy-based MG. Through ES-based energy management, MG was able

to efficiently coordinate DRE and the power grid and minimize drawbacks brought on by high penetration of DRE in PG.

DRE is becoming more and more integrated into the electrical grid. The management and operation of the grid are greatly
hampered by intermittent power outputs of DRE. The electricity distribution network, distributed renewable energy systems,
and ESS may all be easily separated to form the smart grid. In Figure 1, a typical construction is shown.
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The primary components of the power grid, as depicted in Figure 2, are electric wires, transformers, and electrical loads.
The smart grid also incorporates some dispersed generation technologies, such as solar and wind energy sources. ESS, which
performs the roles of both a supply device and a storage device, is connected to the power distribution system in the mean-

time. The energy storage technology improves electric power distribution flexibility and lowers power generation loss. The
grid system is also a radial one, with many batteries connected to users, mostly electric vehicles and hot water tanks.
When some areas are experiencing problems, the smart grids can obtain some rescued electricity with the use of ESS. The

ESS is created and integrated into one component for storing and supplying electricity, which simplifies the topic on
which we are focused. If we assume that one bus has a defect, the concurrent downstream area that is not faulty will also
go dark. The faulty bus can be saved by its related storage system on the one hand with the aid of a storage system. The sys-

tem’s topological structure does not change. On the other side, if its related storage system is unable to continue the
assistance, the malfunctioning bus will signal other buses to ‘rescue’ it. As a result, the system’s topological structure
needs to be modified. The restoration technique causes the underpowered load to be transferred to other buses, changing
the topological structure of the system and creating a load imbalance. With load balancing acting as a restriction, the goal

Figure 1 | Microgrid structure.

Figure 2 | Structure of a power grid.
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of this article is to increase the system’s reliability during the restoration process. The P-N junction of semiconductors exhibits

PV effect. PV cell model that is being developed in this work is based on static operation of a typical P-N junction diode. This
model is made up of a diode D, a shunt resistor Rp, a series resistor Rs, and a direct current source Iph connected in parallel
[22–24]. The necessary voltages and currents are supplied by applying a series–parallel combination of suitable solar panels

and cells. Equation (1) is used to determine the cell output current IPVc:

IPVc ¼ Iph � IDc � IRpc ¼ Iph � Io � exp q � VPVc þ RsIPVc

AKT

� �
� 1

� �
� VPVc þ RsIPVc

Rp
(1)

K is Boltzmann’s constant, and T is the temperature of PV cell. According to Equation (2), the current Iph is linearly related
to PV cell temperature T and inversely proportional to the sun irradiation Gr value:

Iph ¼ [Isc þ Ki � (T � 298)] �Gr=1, 000 (2)

where Gr is solar irradiation (W/m2); Isc is the PV cell’s short-circuit current; Ki is the temperature coefficient of the short-

circuit current (A/K); Array is made up of a series of parallel connections between the PV cells. The PV array’s output current,
IPV, can be stated in the form of Equation (3):

IPV ¼ Np � Iph �Np � Io exp q �
VPV þ Ns

Np
RsIPV

NsNpAKT

0
BB@

1
CCA� 1

0
BB@

1
CCA�

VPV þ Ns

Np
RsIPV

Ns

Np
Rp

(3)

The following equation can be used to explain electrical power PPV of the PV array:

PPV ¼ IPV � VPV (4)

A nonlinear function of operating voltage can be used to express the power of a PV array; this function has an MPP. These
characteristics indicate that PV array’s voltage and power are falling as irradiation levels are dropping. The difference

between the PV cell’s absorbed photon flux and radiative photon flux in radiative recombination by Equation (5) determines
net number of photons absorbed per unit area, which in turn determines current density JPV in PV cell.

JPV
e

¼ ACon

APV

ð1max

1gPV

SAM:5

1
d1� 2p

h3c2

ð1max

1gPV

12d1
exp[(1� eVPV)=(kBTPV)]� 1

(5)

The power output of PV cell is calculated using Equations (5) and (6):

PPV ¼ q1 � qCr � qPVl ¼ JPVAPVVPV (6)

and efficiency is given by Equation (7):

h0
PV ¼ PPV

q1
(7)

(8)

and

�E(11; 12;TE;m) ¼ 2p
h3c2

ð12
11

13d1
exp[(1� m)=(kBTE)]� 1

(9)

The TPV cell’s current density can be expressed as Equation (10):
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(10)

where VTPV is the TPV cell’s output voltage, c is the cell’s refractive index, gBR is reflectivity of backside reflector, fEC is view

factor between emitter and TPV cell, fCC is view factor between cells, and emitter cut-off energy is typically taken to be zero.
The general flow of PHEVs is shown in Figure 3, which includes a charging unit, battery, UC bank, a shared DC bus, and a
load. A DC–DC buck converter and an unregulated bridge rectifier are connected to main supply to enhance charge of battery

being charged by charger.
Low level control: Power converters must be controlled to regulate DC bus and allow localised current to flow in both

directions.
High level control: Method is designed to monitor the SoC (state of charge) and guarantee complete PHEV stability.

Every MG consists of several distributed energy resources, each of which has a local controller. These controllers
keep an eye on the MG’s real power, reactive power, and frequency and distribute power across the VSC-HVDC
link properly to maintain the stability of the entire system. Figure 4 shows architecture of the distributed control

scheme. In an MG, controllers interact with one another and adjust power flow through VSC-HVDC to meet
demand if active or reactive power generation and demand are out of sync. The communication network shown in
Figure 4 is used to share mismatches of active power (Pi¼Pgi Pdi), reactive power (Qi¼Qgi Pdi), and frequencies

(fi¼ 50 fi) between MGs and distributed controllers. When compared to centralised control, which transmits

Figure 3 | General block diagram of PHEV.

Figure 4 | Architecture of the distributed control scheme.
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information over a great distance, the communication network is easier to use and more dependable for exchanging

information among nearby subsystems. Digital communication networks provide intersystem communication, resulting
in greater control design flexibility because surrounding subsystem states can be used for distributed control instead of
only local subsystem information.

The bidirectional converter balances load output and consumption while maintaining a fixed voltage of 300 V.
Deep radial Boltzmann basis machine-based saline water analysis:
Equation (11) can be used to represent the broad fuzzy regression model:

Y ¼ f(X){þ }e (11)

The SRBFS layer can linearly receive input signal vector X(t). It was believed that exponential sigmoid with fuzzy member-

ship would make up the radial basis kernel function. After that, Equation (12) returns the output of the jth SRBFS:

(12)

Zj(t) is kernel centre vector in jth FRBN. Morphological parameters a and c. The output of an FRBNN is a fuzzy linear

weighted sum of outputs from hidden layer nodes. It is calculable using Equation (13):

(13)

Energy functions as well as maximum probability assumptions are included in modelling. The learning objective of RBMs,
which are energy-based methods, is maximum likelihood. Energy of its hidden variables h and visible variables v in joint con-
figuration is given by Equation (14):

E(v, h; u) ¼ �
X
ij

Wijvihj �
X
i

bivi �
X
i

ajhj (14)

θ stands for the variable W(a,b). It is possible to determine the joint probability of v and h by Equation (15):

Pu(v, h) ¼ 1
Z(u)

exp(�E(v, h; u)) (15)

The partition function in this context is denoted by Z(θ). The preceding equation can alternatively be expressed as

Equation (16):

Pu v;hð Þ ¼ 1
Z uð Þ exp

XD
i¼1

XF
j¼1

Wijvihj þ
XD
i¼1

vibi þ
XF
j¼1

hjaj

0
@

1
A (16)

Maximizing the likelihood function P is the goal (v). The edge distribution of P(v, h) allows for the calculation of P(v) by
Equation (17):

Pu(v) ¼ 1
Z(u)

X
h

exp[vTWhþ aThþ bTv] (17)

The RBM parameters are obtained by maximizing P(v). We maximize log(P(v))¼ L(θ) to maximize P(v) by Equation (18):

L(u) ¼ 1
N

XN
n¼1

logPu(v(n)) (18)
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First, stochastic gradient descent is used to maximize L(θ). The L(θ) derivative for W is then calculated as Equation (19):

@L(u)
@Wij

¼ 1
N

XN
n¼1

@

@Wij
log

X
h

exp[v(n)TWhþ aThþ bTv(n)]

 !
� @

@Wij
logZ(u) ¼ EPdut

[vihj]� EPu
[vihj] (19)

The first half of the formula is easy to evaluate. The average vi and hj values across all datasets are evaluated. The second
half of the equation, which contains all 2|v|þ |h| combinations of v and h, is difficult to solve due to its computational com-

plexity. Equation (20) represents the second part of the formula:

X
v,h

vihjPu(v, h) (20)

Because it is not possible to compute analytical solution of gradient, available training strategies are mostly based on

sampling techniques. Gradient is then substantially approximated using Equation (21) using Monte Carlo simulations:

Dai ¼ v(0)i � v(k)i

Dbi ¼ P(hj ¼ 1jv(0))� P(hj ¼ 1jv(k))

DWij ¼ P(hj ¼ 1jv(0))v(0)i � P(hj ¼ 1jv(k))v(k)i (21)

Finally, Equation (22) offers equation for the parameter update:

ai ¼ ai þ Daibj ¼ bj þ DbjWij ¼ Wij þ DWij (22)

In the DBM with one visible layer and two hidden layers, h(1) and h, have a look at joint probability distribution of energy

function E.

4. PERFORMANCE ANALYSIS

The machine used for the experiment has the following hardware components: an Intel Core i5 7200U processor, 8 GB of
RAM, a 1 TB hard drive, and NVIDIA GTX 760MX graphics. Additionally, Python 3.5 environments were used to simulate

how the suggested strategy might be put into practise. To establish the results of the offered technique, we carried out a stat-
istical analysis by evaluating expected performance.

Dataset description: Datasets included following variables: feed flow rate (F¼ 400–600 L/h), permeate flux (Pflux (L/

h m2)), condenser inlet temperature (Tcond ¼ 20–30 °C), evaporator inlet temperature (Tevap¼ 60–80 °C), and feed salt
content (S¼ 35–140 g/L). Permeate flux was the main output. Data has also been divided into three categories for

Table 1 | Analysis based on water salinity composition

Dataset Techniques Accuracy Precision Recall Specificity Computational cost Kappa coefficient

S¼ 35–140 g/L CHP 77 55 42 51 45 41
ML 79 59 43 53 48 43
EA_SWT_MGA 81 61 45 55 51 45

Tcond¼ 20–30 °C CHP 79 59 48 55 48 43
ML 83 63 49 59 53 45
EA_SWT_MGA 85 65 52 61 55 48

Tevap¼ 60–80 °C CHP 82 62 53 59 52 45
ML 85 63 55 63 55 49
EA_SWT_MGA 88 65 59 65 59 51

Water Reuse Vol 00 No 0, 8

Uncorrected Proof

Downloaded from http://iwaponline.com/jwrd/article-pdf/doi/10.2166/wrd.2023.013/1220856/jwrd2023013.pdf
by guest
on 17 June 2023



training, validation, and testing to facilitate NN training. Model parameters are normally obtained from the training div-

ision. Validation division verifies accuracy of continuous training while testing division verifies its performance to avoid
overfitting.

Figure 5 | Analysis for S¼ 35–140 g/L. (a) Accuracy, (b) Precision, (c) Recall, (d) Specificity, (e) Computational cost, (f) Kappa coefficient.
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Table 1 shows analysis based on water salinity composition. Salinity range analysed are S¼ 35–140 g/L, Tcond¼ 20–30 °C,

Tevap¼ 60–80 °C in terms of accuracy, precision, recall, and specificity, computational cost, and kappa coefficient.
Figure 5(a)–5(f) shows analysis for S¼ 35–140 g/L. The proposed technique attained accuracy 81%, precision 61%, recall

45%, specificity 55%, computational cost 51%, and kappa coefficient 45%; CHP attained accuracy 77%, precision 55%, recall

42%, specificity of 51%, computational cost 45%, and kappa coefficient 41%; ML attained accuracy 79%, precision 59%,
recall 43%, specificity 53%, computational cost 48%, and kappa coefficient 43%.

Figure 6(a)–6(f) analysis has been shown for Tcond¼ 20–30 °C. The proposed technique attained accuracy 85%, precision
65%, recall 52%, specificity 61%, computational cost 55%, and kappa coefficient 48%; CHP attained accuracy 79%, precision

Figure 6 | Analysis for Tcond¼ 20–30 °C. (a) Accuracy, (b) Precision, (c) Recall, (d) Specificity, (e) Computational cost, (f) Kappa coefficient.
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59%, recall 48%, specificity 55%, computational cost 48%, and kappa coefficient 43%; ML attained accuracy 83%, precision

63%, recall 49%, specificity 59%, computational cost 53%, and kappa coefficient 45%.
Figure 7(a)–7(f) shows analysis for Tevap¼ 60–80 °C. The proposed technique attained accuracy 88%, precision 65%, recall

59%, specificity 65%, computational cost 59%, and kappa coefficient 51%; CHP attained accuracy 82%, precision 62%, recall

53%, specificity 59%, computational cost 52%, and kappa coefficient 45%; ML attained accuracy 85%, precision 63%, recall
55%, specificity 63%, computational cost 55%, and kappa coefficient 49%.

Figure 7 | (a)–(f) analysis for Tevap¼ 60–80 °C. (a) Accuracy, (b) Precision, (c) Recall, (d) Specificity, (e) Computational cost, (f) Kappa
coefficient.
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5. CONCLUSION

This research proposes a novel technique in economic saline water treatment based on MG architecture integrated with a
renewable energy system. The salinity of water is analysed using a radial Boltzmann basis machine. To ease hydraulic coup-
ling restrictions and guarantee the security of the water supply, a novel supply model that assesses the dependency between

the major WSS and various islanded subsystems, hydraulic stability, and desalination characteristics are constructed. When
examining the location of the case, low-cost power-generating options were evaluated using renewable resources such as PV
devices, wind turbines, and electricity from the grid. The proposed method achieved 88% accuracy, 65% precision, 59%

recall, 65% specificity, 59% computational cost, and 51% kappa coefficient.

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

CONFLICT OF INTEREST

The authors declare there is no conflict.

REFERENCES

Alzahrani, A., Ramu, S. K., Devarajan, G., Vairavasundaram, I. & Vairavasundaram, S. 2022 A review on hydrogen-based hybrid microgrid
system: topologies for hydrogen energy storage, integration, and energy management with solar and wind energy. Energies 15 (21), 7979.

Cruz, H., Law, Y. Y., Guest, J. S., Rabaey, K., Batstone, D., Laycock, B. & … Pikaar, I. 2019 Mainstream ammonium recovery to advance
sustainable urban wastewater management. Environmental Science & Technology 53 (19), 11066–11079.

Dokhani, S., Assadi, M. & Pollet, B. G. 2022 Techno-economic assessment of hydrogen production from seawater. International Journal of
Hydrogen Energy.

Dong, Y., Liu, F., Lu, X., Lou, Y., Ma, Y. & Eghbalian, N. 2022 Multi-objective economic environmental energy management microgrid using
hybrid energy storage implementing and developed Manta Ray Foraging Optimization Algorithm. Electric Power Systems Research 211,
108181.

Harish, V. S. K. V., Anwer, N. & Kumar, A. 2022 Applications, planning and socio-techno-economic analysis of distributed energy systems for
rural electrification in India and other countries: a review. Sustainable Energy Technologies and Assessments 52, 102032.

He, Y., Guo, S., Dong, P., Wang, C., Huang, J. & Zhou, J. 2022 Techno-economic comparison of different hybrid energy storage systems for
off-grid renewable energy applications based on a novel probabilistic reliability index. Applied Energy 328, 120225.

Hemmati, M., Mirzaei, M. A., Abapour, M., Zare, K., Mohammadi-ivatloo, B., Mehrjerdi, H. & Marzband, M. 2021 Economic-environmental
analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response
program. Sustainable Cities and Society 69, 102790.

Jabari, F., Arasteh, H., Sheikhi-Fini, A., Ghaebi, H., Bannae-Sharifian, M. B., Mohammadi-Ivatloo, B. & Mohammadpourfard, M. 2022 A
biogas-steam combined cycle for sustainable development of industrial-scale water-power hybrid microgrids: design and optimal
scheduling. Biofuels, Bioproducts and Biorefining 16 (1), 172–192.

Jalilian, F., Mirzaei, M. A., Zare, K., Mohammadi-Ivatloo, B., Marzband, M. & Anvari-Moghaddam, A. 2022 Multi-energy microgrids: an
optimal despatch model for water-energy nexus. Sustainable Cities and Society 77, 103573.

Jumare, I. A. 2020 Energy storage with salt water battery: a preliminary design and economic assessment. Journal of Energy Storage 27,
101130.

Mazzoni, S., Ooi, S., Nastasi, B. & Romagnoli, A. 2019 Energy storage technologies as techno-economic parameters for master-planning and
optimal dispatch in smart multi energy systems. Applied Energy 254, 113682.

Moazeni, F. & Khazaei, J. 2021 Optimal design and operation of an islanded water-energy network including a combined electrodialysis-
reverse osmosis desalination unit. Renewable Energy 167, 395–408.

Ogbonnaya, C., Abeykoon, C., Nasser, A., Turan, A. & Ume, C. S. 2021 Prospects of integrated photovoltaic-fuel cell systems in a hydrogen
economy: a comprehensive review. Energies 14 (20), 6827.

Okampo, E. J., Nwulu, N. & Bokoro, P. N. 2022 Economic and reliability assessment of hybrid PRO-RO desalination systems using brine for
salinity gradient energy production. Sustainability 14 (6), 3328.

Prathapaneni, D. R. & Detroja, K. 2020 Optimal design of energy sources and reverse osmosis desalination plant with demand side
management for cost-effective freshwater production. Desalination 496, 114741.

Shayan, M. E., Najafi, G., Ghobadian, B., Gorjian, S., Mamat, R. & Ghazali, M. F. 2022 Multi-microgrid optimization and energy
management under boost voltage converter with Markov prediction chain and dynamic decision algorithm. Renewable Energy 201,
179–189.

Sui, Q., Wei, F., Lin, X. & Li, Z. 2021 Optimal energy management of a renewable microgrid integrating water supply systems. International
Journal of Electrical Power & Energy Systems 125, 106445.

Water Reuse Vol 00 No 0, 12

Uncorrected Proof

Downloaded from http://iwaponline.com/jwrd/article-pdf/doi/10.2166/wrd.2023.013/1220856/jwrd2023013.pdf
by guest
on 17 June 2023

http://dx.doi.org/10.3390/en15217979
http://dx.doi.org/10.3390/en15217979
http://dx.doi.org/10.1021/acs.est.9b00603
http://dx.doi.org/10.1021/acs.est.9b00603
http://dx.doi.org/10.1016/j.epsr.2022.108181
http://dx.doi.org/10.1016/j.epsr.2022.108181
http://dx.doi.org/10.1016/j.seta.2022.102032
http://dx.doi.org/10.1016/j.seta.2022.102032
http://dx.doi.org/10.1016/j.apenergy.2022.120225
http://dx.doi.org/10.1016/j.apenergy.2022.120225
http://dx.doi.org/10.1016/j.scs.2021.102790
http://dx.doi.org/10.1016/j.scs.2021.102790
http://dx.doi.org/10.1016/j.scs.2021.102790
http://dx.doi.org/10.1002/bbb.2300
http://dx.doi.org/10.1002/bbb.2300
http://dx.doi.org/10.1002/bbb.2300
http://dx.doi.org/10.1016/j.scs.2021.103573
http://dx.doi.org/10.1016/j.scs.2021.103573
http://dx.doi.org/10.1016/j.est.2019.101130
http://dx.doi.org/10.1016/j.apenergy.2019.113682
http://dx.doi.org/10.1016/j.apenergy.2019.113682
http://dx.doi.org/10.1016/j.renene.2020.11.097
http://dx.doi.org/10.1016/j.renene.2020.11.097
http://dx.doi.org/10.3390/en14206827
http://dx.doi.org/10.3390/en14206827
http://dx.doi.org/10.3390/su14063328
http://dx.doi.org/10.3390/su14063328
http://dx.doi.org/10.1016/j.desal.2020.114741
http://dx.doi.org/10.1016/j.desal.2020.114741
http://dx.doi.org/10.1016/j.renene.2022.11.006
http://dx.doi.org/10.1016/j.renene.2022.11.006
http://dx.doi.org/10.1016/j.ijepes.2020.106445


Vitale, F., Rispoli, N., Sorrentino, M., Rosen, M. A. & Pianese, C. 2021 On the use of dynamic programming for optimal energy management
of grid-connected reversible solid oxide cell-based renewable microgrids. Energy 225, 120304.

Wang, W., Wang, D., Zhao, Y., Yu, Y. & Wang, Y. 2022 Research on capacity optimization and real-time control of island microgrid
considering time-shifting load. Energy Reports 8, 990–997.

Wu, Y., Hu, M., Liao, M., Liu, F. & Xu, C. 2021 Risk assessment of renewable energy-based island microgrid using the HFLTS-cloud model
method. Journal of Cleaner Production 284, 125362.

First received 9 February 2023; accepted in revised form 12 April 2023. Available online 17 May 2023

Water Reuse Vol 00 No 0, 13

Uncorrected Proof

Downloaded from http://iwaponline.com/jwrd/article-pdf/doi/10.2166/wrd.2023.013/1220856/jwrd2023013.pdf
by guest
on 17 June 2023

http://dx.doi.org/10.1016/j.energy.2021.120304
http://dx.doi.org/10.1016/j.energy.2021.120304
http://dx.doi.org/10.1016/j.egyr.2022.02.027
http://dx.doi.org/10.1016/j.egyr.2022.02.027
http://dx.doi.org/10.1016/j.jclepro.2020.125362
http://dx.doi.org/10.1016/j.jclepro.2020.125362

	Economic analysis based on saline water treatment using renewable energy system and microgrid architecture
	INTRODUCTION
	RELATED WORKS
	SYSTEM MODEL
	PERFORMANCE ANALYSIS
	CONCLUSION
	DATA AVAILABILITY STATEMENT
	CONFLICT OF INTEREST
	REFERENCES


