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Abstract In most business and residential organizations, Diesel Generators (DG) is a viable sup-

plementary power source for ensuring an undisturbed power supply. The DG is a hybrid machine

that generates electrical energy using a Diesel Engine (DE) and an Electric Generator (EG). By rou-

tinely monitoring crucial machine parameters, alternative power source efficiency can be improved.

Furthermore, Condition Monitoring Systems (CMS) based on the Internet of Things (IoT) have

supplanted the traditional equipment maintenance method. Predictive maintenance is also an

important building block of Industry 4.0, whose entire process and performance can be fully under-

stood by using IoT-enabled Remote Monitoring (RM) schemes. Firstly, this paper introduces a

remote monitoring and data acquisition scheme to realize the concept of predictive maintenance.

Secondly, this article discusses a strategy for real-time observation of DG parameters as well as

a comprehensive analysis of various metrics. Thirdly, this research article includes a monitoring

and analysis scheme of crucial factors in a DG, like the speed of an engine, voltage output, the cur-

rent produced, power factor, coolant required, fuel consumption, and battery health. Different

mathematical models are formulated by correlating experimental data and estimating the coeffi-
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cients. Finally, to create suitable real-time warnings under critical circumstances, a fuzzy logic-

based Decision Support System (DSS) and web-based integration elements are presented.

� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).

1. Introduction

Industrial manufacturing processes require raw materials and
handle the end-to-end production process. The first industrial

revolution (Industry 1.0) began in the 18th century, with the
adoption of steam power. The second industry revolution
(Industry 2.0) began with the advancement of electricity and
its integration into production and mass production started

at that point. In the’70 s, partially automated industries
employing computers and memory-programmable controls
kicked off the third industrial revolution (Industry 3.0).

Finally, the fourth industrial revolution (Industry 4.0) delivers
smart manufacturing practices by leveraging the concept of a
cyber-physical system and supports the manufacturing opera-

tor with fewer errors as well as high reliability [1]. Similarly,
maintaining industrial machinery is a difficult undertaking
because most modern industrial machines use both mechanical

and electronic systems to operate. As a result, regular mainte-
nance of large industrial devices is essential to avoid concerns
such as decreased productivity, increased production costs,
and job losses [1,2]. In addition, machine maintenance is

divided into three categories: ‘‘Reactive Maintenance (RM),”
‘‘Preventive Maintenance (PVM),” and ‘‘Predictive Mainte-
nance (PM),” among others. Reactive Maintenance is the type

of attention and concern given when something isn’t working
properly. Reactive maintenance allows the equipment to oper-
ate to its fullest potential whereas repairs are only undertaken

once the machine has failed. Light bulbs and home fans are
examples of low-cost systems where the reactive maintenance
technique is ineffective. Repairing badly damaged parts on air-
craft engines, on the other hand, is quite expensive. Preventive

maintenance, on the other hand, is a type of routine mainte-
nance performed to avoid loss. Many institutions strive to pre-
vent failure before it occurs by performing routine equipment

inspections [3]. One of the biggest challenges with preventive
maintenance is determining when it should be performed.
Because the time of breakdown is always unknown, the oper-

ator must plan for important safety machinery with caution. In
the early phases of maintenance schedules, consumers are los-
ing equipment life that is still usable, which increases opera-

tional costs. In a similar theme, predictive maintenance is a
type of maintenance where the schedule of repair is decided
by system monitoring and analytics [4]. Predictive maintenance
not only foresees future failures but also pinpoints faults in

complicated machinery and aids in the identification of specific
sections that require repair.

Escalators, power plants, manufacturing facilities, and

vehicles are just a couple of small areas where electric motors
are being used. The two aspects of electric engine failures are
electrical and mechanical. Because they link the stator and

rotor, bearings are among the most critical and susceptible
to damage in electric motors [9]. Potential malfunctions must
be avoided, financial losses must be kept to a minimum, and

industrial operations must be run securely. Because of this,

accurate condition monitoring of electric engines is vital and
involves a lot of attention [10]. In continuous condition mon-
itoring, data is periodically acquired by the operating
machine’s sensors and compared to a predefined threshold.

Similarly, online Condition Management Systems (CMS)
have grown in popularity recently, where the role of IoT and
IIoT is very much important. The idea of IIoT is to provide

more convenient and reliable maintenance using low-cost
CMS and Industry 4.0. It is made up of three broad sections
such as the establishment of experiment setup, IIoT-based

Condition Monitoring Application (CMA), and the assess-
ment of Machine Learning (ML) models. Further, it is impor-
tant to detect faulty bearings in any rotating machine before
they cause rotational instability [5]. The CMA can use mobile

devices to notify maintenance team supervisors through SMS
and email if critical criteria are exceeded [6]. Also, CMA
enables real-time monitoring and recording of data that is

wirelessly delivered from the setup on a mobile device using
the Android operating system.

Similarly, the CMS of a DG unit has several other physical

parameters that define the performance and efficiency level of
the hybrid machine. In a fully effective CMS, various more
crucial parameters of a DG must be monitored. The vibration

of the generator shaft, the temperature of the shaft, the noise
level, and so on are some of the characteristics. Many studies
have shown the use of fiber optic sensors in machine monitor-
ing applications, such as the Fiber Bragg Grating (FBG) sen-

sor. These sensors are passive and are typically used in
applications requiring high-precision sensing [8]. In the same
way, Table 1 lists some additional significant DG parameters

and sensing principles behind the sensor devices.
Some of the most vital and expensive elements of DG

include the battery, fuel, and coolant oil. Any CMS for DGs

must keep track of the coolant oil’s condition, especially cool-
ant temperature, fuel level, and battery voltage. The sensor
technology has advanced to a point where it can now accu-
rately measure the tank’s gasoline level. In the majority of

DGs, these parameters may be retrieved via the external inter-
face of the DG electric panel. A full grasp of the appropriate
communication protocols is required to develop IoT-enabled

data collection and analysis systems [7]. The suggested CMS
is illustrated in Fig. 1 of this article. The suggested architecture
is a three-layer method that uses the electric control panel and

appropriate sensors to remotely monitor DG parameters. The
first layer is the machine layer where the IoT devices are con-

nected to the DG sets and various real-time parameters are

acquired from the DG control panel. The IoT device commu-
nicates with the DG control panel via RS485 bus architecture
and sends the acquired information to the cloud storage vi
2G/3G/4G network connection. The second layer of the pro-

posed architecture is the cloud computing system which is
responsible for data analytics, diagnostics, data management,
visualization, and machine control. Further, the third layer is

the DSS layer which runs the Fuzzy Inference System (FIS)
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and the required suggestions/notifications are generated using
this stage.

The step-by-step approach of the proposed IoT-enabled
CMS is portrayed with its experimental implementations.
The novelty of this approach is to quantify the instantaneous

specification of different useful components of any DG unit.
The overall efficiency of any machine depends on the individ-
ual component efficiencies and the overall efficiency can be

improved by enhancing individual efficiencies. Further, the
rated efficiency is always defined by the manufacturer and
the deviation in rated efficiencies can be estimated by acquiring

real-time parameters using IoT-enabled devices. The usefulness
of various theoretical models are discussed in the next section
which is followed by every DG designer. All these aspects are
well discussed in this article and the complete experimental

analysis is discussed in the results section of this article.
This article is divided into seven different sections to

emphasize the relevance of an IoT-enabled CMS. The perfor-

mance parameters of the diesel engine and the parameters
related to battery charging efficiency are discussed in the sec-
ond section of the article. Similar to this, the third, fourth,

and fifth sections of the article cover the details of the experi-
mental procedure, data collection process, and hypothesized

DSS model. The outcomes from the experimental study are
presented in the sixth part of this article. The findings of this
suggested experimental endeavour are detailed in the article’s

conclusion section, which is followed by the reference section.

2. Diesel generator model

Diesel-electric generators are important assets in any power
generation industry and these machines provide guaranteed
backup or emergency power whenever needed. The generator

efficiency is always calculated to evaluate the efficiency param-
eter using input and output quantities. The generator efficiency
(gg) is expressed as in Equation (1).

gg ¼
generatoroutput

generatorinput
X100 ð1Þ

The output power delivered by the generator is alternating

electrical power and the energy supplied to the generator as
input is mechanical power. In general, the losses in the copper,

Fig. 1 A 3-layer design for the IoT-enabled CMS for DG monitoring and predictive analysis.

Table 1 Additional significant DG parameters and sensing principles.

Sl.

No.

Other Important Parameters Type of Principle for Sensing

1. Particulate Matter (PM) Quantitative chemical analysis (Gravimetric method)

2. Sulphur Dioxide (SO2) Electrochemical principle (Barium Perchlorate/Thorin titration indicator)

3. Oxides of Nitrogen (NOx) Non-Dispersive IR (NDIR), Non-Dispersive UV (NDUV), Chemiluminescence (high-temperature

device for continuous measurement)

4. Carbon Monoxide (CO) NDIR

5. Oxygen (O2) Paramagnetic measurement (Electrochemical principle)

6. Non-Methane Hydro-Carbon

(NMHC)

Gas Chromatograph type measurement (Flame Ionisation Detector – FID)

7. Engine Vibration Vibration sensor (Piezoelectric type devices, or Accelerometers)

8. Noise level Micro Electro Mechanical System (MEMS) type microphones

9. Engine temperature Temperature sensors (Resistive, or Optical type principle)
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the core, and the mechanical components prevent the genera-
tors from producing all the energy that is fed into devices.
After accounting for all generating losses, the net electrical

power is what is available at the generator output. Therefore,
equation (1) can be redefined as a combination of losses. Sim-
ilarly, Equation (2) and Equation (3) define the generator effi-

ciency as a function of power supplied to the generator,
available output power, and loss components.

gg ¼
generatoroutput

generatoroutputþ generatorlosses
� 100 ð2Þ

gg ¼
generatorinput� generatorlosses

generatorinput
� 100 ð3Þ

Similarly, the generator efficiency in terms of input power
supplied to the generator (Pin) and output power available at

the output of the generator (Pout) can be expressed as in equa-
tion (4). This generator’s efficiency is always in terms of
percentage.

gg ¼
Pout

Pin

� 100 ð4Þ

The expression for generator efficiency as shown in Equa-

tion (4) can also be expressed in terms of generator losses as
in Equation (5) and Equation (6).

gg ¼
Pin � Plosses

Pin

� 100 ð5Þ

gg ¼
Pout

Pout þ Plosses

� 100 ð6Þ

Where, plosses is the generator losses due to several internal
factors as discussed above.

Moreover, the fuel consumption of any diesel engine is also
an important parameter and it is directly related to the effi-
ciency of the engine. The hourly consumption of any DG unit

can be represented as a linear model using equation (9) [8].
This hourly consumption of fuel in the DG unit is expressed
as Liter/hour.

Dt tð Þ ¼ aDPDg tð Þ þ bDPDgr ð7Þ
Where Dt tð Þ represents the hourly fuel consumption of the

DG in Liter/hour; PDg tð Þ is the hourly generated power by the

DG unit (KW); PDgr is the rated power of the DG unit (KW);

aD and bD are the coefficients of the fuel consumption curve.
In general, the coefficients of the fuel consumption curve

are 0.246 and 0.08145 [9].
In a similar context, the battery is used as a storage buffer

and the supplied electric current is passed through the battery

according to Peukert’s law which can be used to predict the
battery discharge by considering the nonlinear properties of
the battery as per Equation (8). Also, the nominal battery

capacity can be evaluated in Ahr to charge in Coulumb as
shown in Equation (9).

tdischarge ¼ H
C

IH

� �k

ð8Þ

Ccapacity ¼ 3600KpnomK1ðcycleÞK2ðtempÞ ð9Þ

Where, Kpnom is the nominal capacity in Ahr, K1ðcycleÞ is
the correction factor for several charge–discharge cycles,
K2ðtempÞ is represented as an ambient temperature correction

factor [9].
Similarly, coolant temperature has a large effect on the vol-

umetric efficiency of the diesel engine. Volumetric efficiency is

an overall measure of engine effectiveness along with its intake
and exhaust system. The volumetric efficiency (gvol) can be
expressed as the engine speed (g), mass flow rate (m�

a), engine

displacement (Vd) and density (qa) as shown in Equation (10).

gvol ¼ 2m�
a=ðqaVdgÞ ð10Þ

Waleed et al. (2002) reported an experimental analysis of
the coolant temperature of a four-stroke cycle engine. The

experimental analysis shows a clear understanding of the effect
of coolant temperature on volumetric efficiency. The experi-
mental results show that the volumetric efficiency decreases
with the increase in coolant temperature [10]. The increase in

coolant temperature also raises the temperature of the cylinder
wall, which increases the amount of heat that is transferred
from the wall to the comparatively cold charge during the

intake stroke, raising the temperature. Additionally, this low-
ers the density and mass flow rate, which lowers the engine’s
volumetric efficiency. Additionally, the fuel efficiency and

brake thermal efficiency are significantly impacted by the cool-
ant temperature. According to Equation (11), the conversion
of fuel energy to brake power by the brake thermal efficiency
is well expressed [10].

gbth ¼ ðbrakepowerÞ=ðfuelmassflowrate

� fuellowheatingvalueÞ ð11Þ

3. Experimental setup

To create an experimental unit, a DG (Cummins Diesel Gen-
erator Set B3.3 Series, 50–62.5 kVA, 40–50 kWe Prime, 150

Litre) with GPRS connectivity (TraDe GPRS) is installed.
Leveraging the RS485 interface of the DG motherboard, exter-
nal device integration with the main control board in the elec-

tric panel is implemented. The RS485 protocol makes it
possible to create a multi-hop and low-cost local network via
twisted pair cables. In addition, the fuel tank’s gasoline level

Fig. 2 Experimental setup of IoT node installed at a Diesel

Generator (DG) unit.
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is measured using a capacitive fuel level sensor with an RS485

interface. Utilizing an RS485 communication interface, the
TraDe unit and fuel sensor unit are linked to a common com-
munication bus. Fig. 2 shows the IoT node interface and the

installation of a capacitive fuel level sensor in the DG unit.
Fig. 3 illustrates the RS485 bus interface. Through the
GPRS-enabled IoT node, the necessary data are retrieved from
the DG control panel and fuel sensor. A cloud framework

receives the data and performs in-depth data analytics on it.
The findings and analysis part of the article discuss the DG
unit’s real-time data analysis.

In this experimental work, a DOE (Design of Experiment)
approach is used to identify the factors that affect the perfor-
mance of the system and to optimize the system based on the

results of the experiments. Here are some steps that can be
taken to conduct a DOE in DG monitoring using IoT:

a) Define the objectives: In this step, the objective is

defined. The main objective of this experimental work
is to identify and analyze various DG parameters for
optimizing efficiency, system reliability, or maintenance

costs.
b) Identify the factors: The next step is to identify the fac-

tors that may affect the performance of the DG moni-

toring system. These factors include real-time data
collection using IoT nodes and smart fuel sensors for
the analysis of diesel consumption.

c) Design the experiment: Based on the identified factors, a
set of experiments are carried out. A continuous record-
ing of real-time data was performed and data segrega-
tion is done for the next level of analysis.

d) Conduct the experiment: The data collected using the

IoT node is analyzed using preprocessing techniques to
determine the effect of each factor on the performance
metrics. The results section describes the techniques

applied to each parameter of the DG set.
e) Analyze the results: In this step, the most important

parameters affecting the DG performance are identified
and analyzed. The most important parameter of the DG

unit which affects maintenance is coolant condition,
engine speed, and battery condition.

f) Validate the results: Finally, the results are validated to

ensure that the improvements in performance are sus-
tained over time.

4. Data sources

The diesel generator is a combination of a diesel engine and an

electric generator to generate electric energy. The electric gen-
erator is often known as an alternator which converts mechan-
ical energy to electrical energy in the form of alternating

current [12]. There are several internal parameters of a diesel
generator unit including both mechanical as well as electrical
parameters. The main control board of the DG unit collects
all this information from different sub-sections and sensors

attached to the individual units. In this article, a set of major
parameters such as Coolant Temperature (CT), Engine Speed
(ES), Fuel Level (FL), Oil Pressure (OP), Battery Voltage

(BV), Voltage (V), Current (I) generated and Frequency (F),
etc. are acquired from the DG using the GPRS TraDe unit.
A small subset of the real-time data recorded in the cloud plat-

form is shown in Table 2.
The dataset shown in Table 2 contains a small set of entire

real-time parameters considered in the proposed analysis tech-
nique. The DG status implies the running condition of the gen-

erator at a particular instance. These data points are helpful to
establish individual mathematic models for the estimation of
performance parameters such as the Rate of fuel consumption

(liter/min), Rate of decrease of coolant temperature (�C/min),
Rate of decrease of battery voltage (V/min) and Rate of
change of oil pressure (Pa/min). The results and analysis of

the proposed predictive maintenance model are discussed in
the subsequent section of the article.

Fig. 3 RS485 bus interfacing scheme for IoT node and capac-

itive fuel sensor.

Table 2 Real-time DG parameters acquired using IoT Device.

Sl. No. CT (�C) ES (RPM) BV (Volt) FL (Liter) V (Volt) I (Amp.) F (Hz) P (Pa) DG Status

1. 30 1498 12.6 273.093 409 2.1 46.67 51 ON

2. 33 1503 12.5 271.44 414 2.2 50 51 ON

3. 36 1499 12.5 271.411 414 3.1 49.9 50.3 ON

4. 32 0 12.8 271.411 0 0 0 0 OFF

5. 32 0 12.8 271.411 0 0 0 0 OFF

6. 31 0 12.9 271.411 0 0 0 0 OFF

7. 30 1498 12.6 269.12 409 3.6 49.9 51 ON

8. 34 1503 12.5 269.062 414 3.8 49.8 51 ON

9. 39 1499 12.5 269.004 414 3.7 50 50.3 ON
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5. Decision Support System (DSS)

The Decision Support System (DSS) is an informational tool
that helps decision-makers to apply judgment, make a choice,

and follow a certain approach. Large volumes of structured
or unstructured data are processed by the information system,
which also gathers data that may help with problem-solving

and decision-making [13,14]. A DSS can be automated, con-
trolled by people, or be a combination of both. There are five
categories of DSS models used in various applications. Fig. 4
shows a list of various types of DSS models used in different

real-time applications [15,16].

In this work, a DSS model is established to perform three
basic tasks such as estimation of parameter variations, evalua-
tion of critical trends or trips during the running of the DG

unit, generation of adequate notifications or alerts, etc. The
proposed DSS model is a knowledge-driven system where
conditions-based decisions are generated for the performance

analysis of the DG unit. A fuzzy logic-based DSS model is
implemented and adequate notifications are generated using
real-time DG parameters. The detailed operation of the DSS

model to perform the above tasks is shown in Fig. 5. The pro-
posed DSS model will help the operation manager to take the
necessary steps during the running of the DG unit.

Fig. 4 Types of Decision Support System (DSS).

Fig. 5 Decision Support System (DSS) for data management, critical trends, and warnings.
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6. Results analysis

The DG unit’s real-time parameters are stored in a cloud
framework (datoms.io) where the IoT node performs the com-
munication using the MQTT protocol. The data management

and analysis are performed in the cloud framework. A detailed
analysis of the DG performance is discussed in this section.
Apart from the data management and analysis, the proposed

DSS is also presented in the subsequent section of this research
article. The detailed list of parameter-specific analysis and esti-
mation techniques incorporated in this proposed research

work is enumerated in Table 3.
The coolant temperature (�C) and engine speed (RPM) of

the DG unit under test are examined initially. Fig. 6 depicts
the changes in coolant temperature and engine speed (RPM)

Table 3 Parameter specific analysis and estimation

techniques.

Sl.

No.

DG Parameters Short

Notation

Analysis & Estimation

Method

1. Coolant

Temperature

(�C)

CT � Variation in CT concern-

ing ES

� Notification during alarm

scenario

� Rate of decrease of CT

(�C/min)

2. Engine Speed

(RPM)

ES � Variation in ES for differ-

ent DG running state

� Notification during critical

trends

3. Battery Voltage

(V)

BV � Variation in BV concern-

ing DG running state

� Notification during alarm

scenario

� Charging/discharge rate of

battery

4. Fuel Level

(Liter)

FL � Variation in FL

� Fuel rate of the engine

� Notification during critical

trends

5. Oil Pressure

(Pa)

OP � Variation in OP

� Over/under pressure

notification

6. Voltage

Generated (V)

VG � Estimation of average volt-

age generated

7. Current

Generated

(CG)

CG � Estimation of average cur-

rent generated

8. Frequency (Hz) F � Variation in F

9. DG Status DGS � Alert notification during

every DGS

Fig. 6 Variations in coolant temperature (�C) and engine speed

(RPM) for a period of 24Hrs.

Fig. 7 Variation of coolant temperature (�C) and engine speed

(RPM) for the 2nd DG ON condition.

Fig. 8 Variation of engine speed (RPM) and coolant tempera-

ture (�C) during the 3rd DG ON state.

Table 4 Maximum coolant temperature and rate of decrease.

Sl.

No.

DG ON/OFF

condition

Maximum

Temperature (�C)
Rate of decrease

(�C/min)

1. T2 85 �0.2027

2. T3 86 �0.2119

Note: The above values are evaluated from the DG after filling the

new coolant during maintenance.
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throughout 24 h. The DG was turned on three times during the
day, and the real-time fluctuations were recorded using the IoT

node. The coolant temperature rises following the DG ON
condition, as can be shown in Fig. 6. When the coolant tem-
perature exceeds 95 �C, the DG performance may suffer.

The coolant temperature should not exceed 90 �C, according
to industry standards. As a result, an alarm condition must
be created in the IoT dashboard. The user will be notified of

the alarm conditions. The proposed DSS is designed to meet
the above requirement and performs the alarm operation
whenever required.

In a similar context, a theory is also developed about the

variations in coolant temperature (�C) and DG engine speed
(RPM). The discrepancy between coolant temperature and
engine speed may be seen in Fig. 6. The coolant temperature

rises to about 85 �C at a steady engine speed of 1500 RPM.
As a result, there is no connection between the rise in coolant
temperature (�C) and engine speed. Further, the rate of

increase of the coolant temperature is required to be analyzed
and a mathematical interpretation of the rate of increase is
established by observing the characteristics as shown in
Fig. 7 and Fig. 8. It is reported that 40% of all diesel engine

problems are due to inadequate coolant maintenance. Though
its primary purpose is to maintain the engine’s internal work-
ing temperature, the coolant also transports valuable nitrites to

the cylinder sleeve liner’s outside [11]. The fluid’s inertia causes
small vacuum pockets, and vapor bubbles to grow on the liner
wall. This is controlled by the vibration of a vertically pound-

ing piston and a spinning crankshaft. The liner vibrates back
through the vacuum pockets, which causes the bubbles to col-
lapse under pressure, ripping tiny portions off the liner. Those

little bits may eat into a hole if they go undetected and have
enough time. Newer coolants have an ingredient that acts as
a barrier, preventing the liner wall from cavitating. There are
two major types of additives Nitrites/Borate and Mobdylate/

Phosphate used to maintain the coolant function in the engine.
It is not always possible to measure the condition of the cool-
ant by utilizing laboratory-based chemical tests. Therefore, the

rate of decrease in coolant temperature is the most useful
parameter to evaluate the coolant conditions in the diesel
engine [11,12].

The rate of increase and decrease of coolant temperature is
evaluated by establishing a mathematical model between tem-
perature and time duration. The increase in coolant tempera-

ture for the 2nd DG ON condition is portrayed in Fig. 7.
The highest peak of coolant temperature is observed at 85
(�C) which is within the safety limit. In a similar context, the
variations of coolant temperature for a constant engine speed

in the 3rd DG ON condition are portrayed in Fig. 8.
The rate of decrease of coolant temperature for two differ-

ent DG ON/OFF conditions is listed in Table 4. It is found

that the rate of decrease of coolant temperature for two differ-
ent DG ON/OFF conditions remains nearly equal. The cool-
ant was replaced two days before the measurement readings

were collected from the DG unit. Therefore, it can be con-

cluded that the rate of decrease listed in Table 4 is the reference
value and a suitable condition-based checkpoint can be estab-

lished to identify the status of coolant oil present inside the
DG unit. This condition-based model is established in the pro-
posed DSS model for DG predictive maintenance.

It is obvious that the rate of decrease of coolant tempera-
ture always changes after the adequate running interval of
the DG unit and this is a good indicator to notify the user

about the requirement for coolant oil replacement. Table 5
shows the maximum coolant temperature and rate of decrease
reached for two different cases.

It is observed that the maximum coolant temperature is

reached at nearly 90 �C for two different cases and the rate
of decrease of the coolant temperature is reduced as compared
to the rate mentioned in Table 4. Further, a mathematical

model is established to predict the rate of decrease in the cool-
ant temperature from the maximum temperature reached dur-
ing the DG running. Equation (12) shows the established non-

linear model from the recorded readings of the DG unit.

CT ¼ CTme
�rt ð12Þ

Where CT is the coolant temperature (�C), r is the rate of

decrease of coolant temperature (�C/min) and t is the time.
The estimated rate of decrease in coolant temperature and

the actual rate of decrease is plotted in Fig. 9. This represents

Table 5 Maximum coolant temperature and rate of decrease (after 24 months).

Sl. No. Case Maximum Temperature (((C) Rate of decrease (r) �C/min Average Rate of decrease (r) �C/min

1 Case-1 89 �0.1196 �0.1226

2 Case-2 91 �0.1256

Fig. 9 Rate of decrease of coolant temperature (�C).

Table 6 Dimension of the fuel tank.

Sl. No. Parameters Dimension

1 Shape Rectangular

2 Width 1006 mm

3 Length 1743 mm

4 Height 185 mm

5 Usable capacity 300 Liters
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a non-linear model for the rate of decrease of coolant temper-
ature with a maximum temperature (CTm) of 100 �C. It is
observed that the decrease of coolant temperature for a partic-

ular time interval can easily be estimated using equation (12).
Further, fuel consumption is an important parameter to

check the performance of the DG unit. The capacitive fuel

transmitter is interfaced with the IoT node using an RS485
bus connection. The fuel level is measured as a percentage of
available fuel and finally, it is converted to the actual fuel level

inside the tank. The tank capacity is 300 Liters and the com-
plete dimension of the tank is listed in Table 6.

The fuel level presented in Fig. 10 is the calculated fuel level
present in the DG unit for 24 Hrs where the DG was switched

ON thrice that day. The rate of fuel consumption is also esti-
mated from the real-time fuel data which can be seen in
Fig. 11. It can be observed that the rate of fuel consumption

(Liters/Hr) is varying from 11 Liters/Hr to 12 Liters/Hr. The
average fuel rate estimated using the real-time fuel sensor data
is around 12 Liters/Hr. This average rate of fuel consumption

lies within the standard limit as per the company specification.
Equation (13) represents the rate of fuel consumption of the

DG unit. As per the standard limit, a 160 KVA DG unit will
have a rated fuel consumption of 16 Liters/Hr for ø load. Fur-
ther, equation (13) shows a fitted model of the rate of decrease

in the fuel level which is established using the real-time fuel
data captured using the IoT node.

FL ¼ 100e�frt ð13Þ
Where FL is the fuel level inside the tank (Liters), fr is the

rate of decrease in fuel level (Liters) and t is the time.
As shown in Fig. 10, the fuel level is gradually decreased

due to the consumption done by the DG unit. The fuel level
in the fuel tank and the rate of fuel consumption is directly
related to each other. It is observed that the fuel level is grad-

ually reducing concerning the duration of the DG running. A
mathematical model is established to predict the rate of fuel
consumption and remaining fuel inside the fuel tank. Similarly,

the fuel rate variations for a specified time interval can be stud-
ied in Fig. 11 and the time-specific suggestions can be gener-
ated from the proposed DSS model. A detailed description
of the proposed DSS model is portrayed in the subsequent sec-

tion of the article.
Similarly, the battery unit in the DG is a crucial part, and

its condition directly affects maintenance costs. As a result,

DG predictive maintenance includes the monitoring of the bat-
tery unit as a key component. Additionally, the IoT node from
the DG motherboard interface was used to record the DC volt-

age level of the DG battery (12 V/90 Ah) unit. Fig. 12 depicts
the voltage level of the DG battery unit about the engine speed
for 24 h while using various ON/OFF settings. As previously
noted, the DG unit was started three times during the day’s

24-hour period. However, the battery voltage drops below
13 V and reaches approximately 12 V in every running situa-
tion. The drop in battery voltage to a level of 12 V is within

the rated specification of the DG battery unit. Therefore, it
can be determined that the battery unit is in good condition
and meets the requirements from the time of purchase. It also

doesn’t need any maintenance. The charging time (hours) of a
lead-acid battery is related to the battery capacity (mAh) and
the amount of charging current (mA) as per equation (14).

Fig. 12 DG Battery charging and discharging concerning the

engine speed for 24 h.Fig. 11 Fuel rate (Liters/Hr) variation of the DG unit under test.

Fig. 10 Variation of fuel level (Liters) for a period of 24Hrs.
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BatteryCharingTime hð Þ ¼ BatteryCapacityðmAhÞ
ChargingCurrentðmAÞ ð14Þ

The rate of charging or discharging of a battery device is
referred to as C-rating. A battery’s capacity is often rated

and labeled at the 1C Rate (1C current), which indicates that
a completely charged 90Ah battery should be able to supply
10 Amps for nine hours. The battery unit is continuously mon-

itored and the battery voltage level is recorded. Fig. 12 shows
DG Battery charging and discharging characteristics concern-
ing the engine speed for 24 h.

Fig. 13 also shows how the DG generates a voltage (V) and

current (A) during loading and unloading occurs. Table 7 indi-
cates the instantaneous peak current (A) produced by the DG
in loading and unloading scenarios. According to Table 7, the

DG produces a peak current of 4.1A during an abrupt ON at
08:38 h, while the peak current is zero during an OFF condi-
tion. Similarly, the peak current at starting is around 3.0 A

and gradually increases to 4.9 A under maximum loading con-
ditions. As a result, it may be stated that when the DG starts,
the current saturates after a specific time. It can also be postu-

lated that the coolant temperature has a good link with the DG
current generation both at the loading and unloading condi-
tions. A similar pattern can be observed in Fig. 6 where the
coolant temperature follows a similar pattern as the current

generated from the DG unit. At maximum loading and current
generation, the coolant temperature reaches its maximum. At
each operating period, the voltage generated by the DG unit

stays constant. As a result, it has no connection to the present
generation or coolant temperature. The engine speed, on the

other hand, is proportional to the voltage created by the DG
when it is operating.

Additionally, the oil pressure is a crucial metric to consider

while evaluating the condition of a DG unit. When the flow of
fuel is restricted, the oil pressure rises. These issues arise
because of a barrier in the fuel flow, component failure, or

an issue with the oil itself. Under normal circumstances, the
usual oil pressure ranges from 25 PSI to 65 PSI. The oil pres-
sure fluctuations are obtained utilizing the IoT device from the
DG control panel. Fig. 14 depicts the oil pressure (PSI) with

engine speed (RPM) for a 24-hour recording. Peak oil pressure
is around 50 PSI, which is much below the maximum permis-
sible limit. During the DG’s startup phase, the oil pressure

maintains at 50 PSI, then drops to 42.5 PSI after a while. This
is a favorable quality for the DG because the oil flow is unre-
stricted in the flow channel. As a result, the DG under test does

not require any oil pressure maintenance.
The proposed predictive maintenance scheme for remote

DG monitoring and analysis is well understood by acquiring
real-time DG parameters using IoT architecture.

Various real-time data were captured and used for further
analysis to understand the in-depth operational efficiency of
the DG unit. The equations discussed in the second section

of this article are very much useful to get insight information
about the machine. The usefulness of equation (1) to equation
(9) can be understood by correlating real-time DG parameters

collected using IoT-based architecture. A hypothetical analysis
is presented below to portray the usefulness of these mathe-
matical equations.

a) The generator efficiency (gg) is expressed in different

forms as shown in Equation (1), Equation (2), Equation

(3), Equation (4), Equation (5), and Equation (6). To
quantify the parameter gg, suitable independent param-

eters like input power, output power, and loss compo-

nent of the power are required. Moreover, the
proposed IoT-based architecture measures the power

Fig. 13 Voltage and current generation from the DG unit under

different ON/OFF conditions.

Table 7 Generation of current (A) during both loading and

unloading conditions.

Sl.

No.

Current

(A)

Time (hh:

mm)

Running Status of the DG

1. 04.12 08:38 Sudden ON and DG was in OFF

condition

2. 02.91 18:03 Initial DG start condition

3. 04.92 18:57 Full load condition

Fig. 14 Variations in oil pressure (PSI) vs the engine speed

(RPM).
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delivered to the load by acquiring real-time data from

the DG motherboard. However, the input power of
any DG unit remains the same as the output power
for the ideal scenario with no loss component in it. This

condition is not always feasible as the power loss com-
ponent is an inherent quantity in any distribution sys-
tem. By introducing and compressing air and fuel into
the engine separately, diesel generators can achieve

greater power output with less fuel consumption. When
operating within its designed optimum range, a typical
diesel generator can attain an efficiency level of around

40 percent, which can go up to 80 percent of its total
load capacity. As the rated efficiency varies within a
range, the efficiency equations mentioned above can be

used to calculate the instantaneous efficiency by using
power quantities from the DG motherboard.

b) Similarly, fuel consumption is another important factor
that needs to be analyzed in any DG unit. Equation (7)

shows the hourly fuel consumption of the DG unit in
Liter/hour. It can be observed that the coefficients of
the fuel consumption curve (aD and bD) and the rated

power of the DG unit are constant. Equation (7) is very
much useful to estimate the hourly fuel consumption
using an empirical model and correlating with the data

obtained by the IoT based data analytics architecture.
The IoT node is also collecting the fuel information
from the DG motherboard and calculating the hourly

fuel consumption using the fuel sensor data. However,
the Equation (7) shows an empirical model based on
the power generated by the DG unit which is related
to the fuel consumption. This experimental work is car-

ried out by using the commercial grade IoT node (TraDe
node) which has it’s own dashboard. For better user
experience, the dashboard contains a comparative view

on the empirical model as well as the instantaneous fuel

consumption collected from the DG motherboard and
the fuel sensor unit.

c) Further, battery capacity must be monitored continu-

ously in any DG unit. A similar approach is carried
out to predict the battery discharge using an empirical
non-linear model and estimate the nominal battery
capacity in Ahr-Coulumb. As the nominal battery

capacity is also an important parameter in any DG unit,
a correlation with the empirical model must be estab-
lished and this is done by collecting real-time battery sta-

tus along with some important aspects such as battery
charging/discharging rate estimated from the real-time
data collected from IoT node.

Subsequently, the implementation of a DSS model is dis-
cussed with in-depth concepts and corresponding results are
portrayed for analysis. The DSS model used in this research

work is developed using a fuzzy logic-based approach where
comparative decisions are taken using equipment-specific rated
specifications from the manufacturer. A set of rated specifica-

tions of 50–62.5 kVA diesel generators are incorporated in the
conditions-based DSS model as listed in Table 8. The major
DG parameters considered in this work are compared with

the rated threshold levels from the manufacturer. Real-time
data recording and processing can also be performed using a
distributed computing environment like Big Data-enabled

platforms [13,14]. This will help the users to have a common
platform for data storage, management, analytics, and
decision-making [15,16]. Generating adequate notifications
and giving alerts to the user is the most important aspect which

needs to be considered in any CMS. The corresponding notifi-
cations or alerts generated using the DSS model are also listed
in Table 8. The decision logic of the proposed DSS model is

established using a fuzzy logic-based approach and adequate

Table 8 Threshold level of various DG parameters and notifications.

Sl.

No.

Real-time DG

parameters

Notation Threshold value Notifications

1 Coolant Temperature

(�C)
CT CT � 90 �C � Variation in CT concerning ES

� Notification during alarm scenario

� Rate of decrease of CT (�C/min)

2 Engine Speed (RPM) ES ES � 1500 RPM � Variation in ES for different DG running

state

� Notification during critical trends

3 Battery Voltage (V) BV 12 V � Variation in BV concerning DG running

state

� Notification during alarm scenario

� Charging/discharge rate of battery

4 Fuel Level (Liter) FL 30% of the tank capacity (300 Liters), i.e. 90

Liters

� Variation in FL

� Fuel rate of the engine

� Notification during critical trends

5 Oil Pressure (Pa) OP 10–15 psi per 1000 RPM and

55–65 psi for full speed (1500 RPM)

� Variation in OP

� Over/under pressure notification

6 Voltage Generated (V) VG 400 V for 50–62.5 kVA diesel generator Estimation of average voltage generated

7 Current Generated

(CG)

CG 4 A (Average current generated) Estimation of average current generated

8 Frequency (Hz) F 48 Hz to 50 Hz Variation in Frequency (F)

9 DG Status DSG On-board status (Any error status from the main

board)

Alert notification during every DGS
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Fig. 17 Fuzzy logic input membership function for BV.

Fig. 18 Fuzzy logic input membership function for FL.

Fig. 19 Fuzzy logic input membership function for VG.

Fig. 20 Fuzzy logic input membership function for CG.

Fig. 16 Fuzzy logic input membership function for ES.

Fig. 15 Fuzzy logic input membership function for CT.
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Fig. 23 Fuzzy logic input membership function for DSG.

Fig. 24 Fuzzy logic output membership function for CT.

Fig. 25 Fuzzy logic output membership function for ES.

Fig. 26 Fuzzy logic output membership function for BV.

Fig. 22 Fuzzy logic input membership function for F.

Fig. 21 Fuzzy logic input membership function for OP.
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Fig. 29 Fuzzy logic output membership function for VG.

Fig. 30 Fuzzy logic output membership function for CG.

Fig. 32 Fuzzy logic output membership function for DSG.

Fig. 31 Fuzzy logic output membership function for F.

Fig. 28 Fuzzy logic output membership function for FL.

Fig. 27 Fuzzy logic output membership function for OP.
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condition-based notifications are generated to identify
machine issues. Fig. 15, Fig. 16, Fig. 17, Fig. 18, Fig. 19,
Fig. 20, Fig. 21, Fig. 22, and Fig. 23 depict the input member-

ship functions of the fuzzy logic model. Further, Fig. 24,
Fig. 25, Fig. 26, Fig. 27, Fig. 28, Fig. 29, Fig. 30, Fig. 31,
and Fig. 32 depict the output membership functions of the pro-

posed fuzzy-based decision model similarly. Table 9 contains a
list of the setup settings for the input and output fuzzy mem-
bership functions.

By combining a set of language rules derived from DG
operational circumstances, the Mamdani fuzzy inference sys-
tem generates appropriate notifications. Each fuzzy rule in
the Mamdani fuzzy inference system produces a fuzzy set as

its output. This Mamdani-based fuzzy inference system was

chosen because the fuzzy rule base is more comprehensible
and intuitive. Additionally, it works best for expert system
applications where the fuzzy rules are generated from

subject-matter expertise held by humans.
The output of each rule is a fuzzy set created using the out-

put membership function and implication approach of the

Fuzzy Inference System (FIS). These output fuzzy sets are
combined into a single fuzzy set via the FIS’s aggregation pro-
cess. The final crisp output value is then calculated from the

combined output fuzzy set by defuzzifying it using one of the
techniques described in Defuzzification Methods. Depending
on the range of the associated parameter, triangular and trape-
zoidal functions are used to produce the individual member-

ship functions.

Table 9 Fuzzy membership functions with a range.

Sl. No. Real-time DG parameters Notation Function Type Membership Range Membership Values

1. Coolant Temperature (�C) CT Triangular Low [80 82 84]

Medium [82 85 88]

High [86 90 94]

2. Engine Speed (RPM) ES Trapezoidal Very Low [1003 1180 1270 1430]

Medium [1408 1440 1470 1520]

High [1501 1541 1571 1631]

3. Battery Voltage (V) BV Trapezoidal Low [0 1.452 3 4.57]

Medium [3.4 6.32 7.82 11]

Good [9.666 11 13 14]

4. Fuel Level (Liter) FL Trapezoidal Low [-0.549 27.9 53.32 80.4]

Medium [67.2 121 147.9 200]

High [172.9 224 255 301]

5. Oil Pressure (Pa) OP Trapezoidal Low [1.54 23.6 39.45 57.7]

Medium [50.4 55.96 61.2 68.8]

Critical [64.95 72.55 74.59 83.31]

6. Voltage Generated (VG) VG Trapezoidal Very Low [-0.874 59.8 134 199.7]

Low [174 267 315.2 403]

Good [384.2 401.3 417.2 442.2]

7. Current Generated (CG) CG Trapezoidal Very Low [0.00289 0.742 1.21 1.978]

Low [1.58 2.53 2.93 3.976]

Medium [3.69 4.087 4.48 4.99]

High [4.761 5.121 5.443 5.901]

8. Frequency (Hz) F Trapezoidal Low [1.13 16.95 31 48.5]

Good [46.77 49.43 52.75]

Critical [50.01 53.4 54.38 58.83]

9. DG Status DSG Trapezoidal Fault [0 0.406 0.6099 0.997]

Good [0.937 1.08 1.197 1.39]

Table 10 Symbolic representations of the fuzzy rules.

’1 3 3 0 0 3 0 2 2, 1 0 0 0 0 0 0 0 0 (1): 1 ’

’2 3 3 0 0 3 0 2 2, 1 0 0 0 0 0 0 0 0 (1): 1 ’

’3 3 3 0 0 3 0 2 2, 2 0 0 0 0 0 0 0 0 (1): 1 ’

’0 3 3 0 0 3 0 2 2, 2 2 0 0 0 0 0 0 0 (1): 1 ’

’0 1 3 0 0 3 0 2 2, 2 1 0 0 0 0 0 0 0 (1): 1 ’

’0 2 3 0 0 3 0 2 2, 0 1 0 0 0 0 0 0 0 (1): 1 ’

’0 0 3 0 0 0 0 0 2, 0 0 3 0 0 0 0 0 2 (1): 1 ’

’0 0 2 0 0 0 0 0 2, 0 0 2 0 0 0 0 0 2 (1): 1 ’

’0 0 1 0 0 0 0 0 2, 0 0 1 0 0 0 0 0 2 (1): 1 ’

’0 0 0 1 0 0 0 0 2, 0 0 0 1 0 0 0 0 2 (1): 1 ’

’0 0 0 2 0 0 0 0 2, 0 0 0 2 0 0 0 0 2 (1): 1 ’

’0 0 0 3 0 0 0 0 2, 0 0 0 3 0 0 0 0 2 (1): 1 ’

’0 3 0 0 1 0 0 0 2, 0 0 0 0 1 0 0 0 2 (1): 1 ’

’0 3 0 0 2 0 0 0 2, 0 0 0 0 2 0 0 0 2 (1): 1 ’

’0 3 0 0 3 0 0 0 2, 0 0 0 0 3 0 0 0 2 (1): 1 ’

’0 3 0 0 0 3 3 0 2, 0 0 0 0 3 2 0 0 2 (1): 1 ’

’0 3 0 0 0 2 3 0 2, 0 0 0 0 3 1 0 0 2 (1): 1 ’

’0 3 0 0 0 1 3 0 2, 0 0 0 0 3 1 0 0 2 (1): 1 ’

’0 3 0 0 0 3 3 0 2, 0 0 0 0 0 2 2 0 2 (1): 1 ’

’0 3 0 0 0 3 3 2 2, 0 0 0 0 0 0 0 2 2 (1): 1 ’

’0 3 0 0 0 3 3 0 1, 0 0 0 0 0 0 0 0 1 (1): 1 ’

’0 3 0 0 0 3 3 2 2, 0 0 0 0 0 0 0 0 2 (1): 1 ’
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The proposed DSS is tested with different standard inputs

to the fuzzy model and desired notifications are generated.
The symbolic representations of the fuzzy rules are listed in
Table 10. The test inputs and notifications generated from
the fuzzy DSS model are listed in Table 11. These test notifica-

tions will be helpful for the maintenance engineers during the
operation of the DG unit.

A similar approach to remote monitoring of DG units can

be adapted on a large scale and a wide variety of such machi-
nes can be monitored using a common cloud framework. A
scalable architecture of the remote DG monitoring using

IoT-enabled technologies is depicted in Fig. 33. Important
decisions and remote analysis based on real-time parameters
can also be performed by utilizing internet-connected machi-

nes on a large scale.

7. Conclusion

Machine predictive maintenance tools like CMS facilitated by
the Internet of Things (IoT) are a difficult area in the present
technical advancements associated with Industry 4.0. The pro-
posed research work showcases the utilization of smart

decision-making methodology by incorporating real-time
machine data using IoT-enabled devices. Experimental imple-
mentations, analysis, and decision-making are used to empha-

size the proposed research works described in this article. The

most significant DG unit metrics were successfully recorded,

and the findings were analyzed. The significance of this
research effort stems from the capacity to use IoT-enabled
technologies to monitor critical DG characteristics such as
engine speed, voltage, the current generated, power factor,

coolant, fuel, and battery status, among others. The conse-
quences of irregularities in these parameters are indicated, as
well as their safe operating range. Some of the major analyses

performed to monitor the DG performance are maximum CT,
rate of decrease of CT, the instantaneous rate of fuel consump-
tion, rate of variation of fuel consumption during DG running

condition, battery charging rate, etc. This will assist users in
making appropriate maintenance decisions for the discovery
of new information. Finally, a Fuzzy-DSS model is imple-

mented and tested to generate appropriate alerts/notifications
for the user. The configuration settings of the Fuzzy logic
model as well as the rule base are well documented in this
article.
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Fig. 33 Scalable architecture of the remote DG monitoring using IoT.

Table 11 Test inputs and notifications generated from the Fuzzy DSS model.

Inputs to the Fuzzy DSS model

[CT, ES, BV, FL, OP, VG, CG, F, DSG]

Outputs of the Fuzzy DSS model

[CT, ES, BV, FL, OP, VG, CG, F, DSG]

Notifications Generated

[87, 1510, 13, 121, 96, 400, 4.2, 50, 1.1] [1.45, 0, 0, 0, 0, 0, 0, 0, 0] Coolant Temperature is Critical

[60, 1541, 13, 121, 96, 400, 4.2, 50, 1.1] [1, 0.527, 1, 1, 1, 1, 1, 1, 1] Engine Speed is Critical

[60, 1510, 13.2, 119, 74.59, 402, 4.1, 50, 1.1] [1, 1, 1, 1, 1.9, 1, 1, 1, 1] Oil Pressure is Critical
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