
Citation: Singhal, S.; Jatana, N.;

Sheoran, K.; Dhand, G.; Malik, S.;

Gupta, R.; Suri, B.;

Niranjanamurthy, M.; Mohanty, S.N.;

Ranjan Pradhan, N. Multi-Objective

Fault-Coverage Based Regression

Test Selection and Prioritization

Using Enhanced ACO_TCSP.

Mathematics 2023, 11, 2983. https://

doi.org/10.3390/math11132983

Academic Editor: Ioannis G. Tsoulos

Received: 8 May 2023

Revised: 26 June 2023

Accepted: 27 June 2023

Published: 4 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Multi-Objective Fault-Coverage Based Regression Test
Selection and Prioritization Using Enhanced ACO_TCSP
Shweta Singhal 1 , Nishtha Jatana 2,*, Kavita Sheoran 2, Geetika Dhand 2 , Shaily Malik 2, Reena Gupta 3,
Bharti Suri 3, Mudligiriyappa Niranjanamurthy 4 , Sachi Nandan Mohanty 5 and Nihar Ranjan Pradhan 5,*

1 Department of Computer Science and Information Technology, Indira Gandhi Delhi Technical University for
Women, New Delhi 110006, India; miss.shweta.singhal@gmail.com

2 Department of Computer Science and Engineering, Maharaja Surajmal Institute of Technology,
New Delhi 110058, India

3 University School of Information & Communication Technology, Guru Gobind Singh Indraprastha University,
New Delhi 110078, India

4 Department of AI and ML, BMS Institute of Technology and Management, Bengaluru 560064, India
5 School of Computer Science & Engineering, VIT-AP University, Amaravati 522237, India;

sachinandan09@gmail.com
* Correspondence: nishtha.jatana@gmail.com (N.J.); nihar.pradhan@vitap.ac.in (N.R.P.)

Abstract: Regression testing of the software during its maintenance phase, requires test case pri-
oritization and selection due to the dearth of the allotted time. The resources and the time in this
phase are very limited, thus testers tend to use regression testing methods such as test case prioriti-
zation and selection. The current study evaluates the effectiveness of testing with two major goals:
(1) Least running time and (2) Maximum fault coverage possible. Ant Colony Optimization (ACO) is
a well-known soft computing technique that draws its inspiration from nature and has been widely
researched, implemented, analyzed, and validated for regression test prioritization and selection.
Many versions of ACO approaches have been prolifically applied to find solutions to many non-
polynomial time-solvable problems. Hence, an attempt has been made to enhance the performance
of the existing ACO_TCSP algorithm without affecting its time complexity. There have been efforts to
enhance the exploration space of various paths in each iteration and with elite exploitation, reducing
the total number of iterations required to converge to an optimal path. Counterbalancing enhanced
exploration with intelligent exploitation implies that the run time is not adversely affected, the same
has also been empirically validated. The enhanced algorithm has been compared with the existing
ACO algorithm and with the traditional approaches. The approach has also been validated on four
benchmark programs to empirically evaluate the proposed Enhanced ACO_TCSP algorithm. The
experiment revealed the increased cost-effectiveness and correctness of the algorithm. The same has
also been validated using the statistical test (independent t-test). The results obtained by evaluating
the proposed approach against other reference techniques using Average Percentage of Faults De-
tected (APFD) metrics indicate a near-optimal solution. The multiple objectives of the highest fault
coverage and least running time were fruitfully attained using the Enhanced ACO_TCSP approach
without compromising the complexity of the algorithm.

Keywords: ant colony optimization; regression testing; test suite prioritization; metaheuristic
technique; nature-inspired technique

MSC: 68-04

1. Introduction

Software has unprecedentedly altered the lifestyles of people in current and forthcom-
ing times. In order to prevent software from getting superseded, lots of effort is required
for its maintenance, thus incurring a hefty amount of money. Errors in software can be

Mathematics 2023, 11, 2983. https://doi.org/10.3390/math11132983 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11132983
https://doi.org/10.3390/math11132983
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8267-8867
https://orcid.org/0000-0002-7752-2515
https://orcid.org/0000-0003-4008-8150
https://orcid.org/0000-0002-4939-0797
https://orcid.org/0000-0003-2193-3101
https://doi.org/10.3390/math11132983
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11132983?type=check_update&version=1

Mathematics 2023, 11, 2983 2 of 21

functional or non-functional. Functional errors are related to the operations and actions of
software, whereas non-functional errors are related to customer expectations and perfor-
mance requirements. Function testing includes unit testing, system testing, and acceptance
testing, whereas non-function testing deals with evaluating the parameters such as security,
reliability, usability, and scalability. Software testing needed to ensure the proper function-
ing of the software after updates are referred to as Regression Testing [1]. Researchers have
been rigorously working toward the development and validation of various regression
testing techniques. Regression Test Prioritization and Regression Test Selection are the
key regression testing techniques focused on in this paper. Regression test selection and
prioritization activities, when carried out in an endeavor to obtain promising results in the
minimum possible time, are an NP—complete combinatorial optimization problem [2]. The
taxonomy of Regression Test Selection and Prioritization techniques is shown in Figure 1.

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 22

1. Introduction
Software has unprecedentedly altered the lifestyles of people in current and forth-

coming times. In order to prevent software from getting superseded, lots of effort is re-
quired for its maintenance, thus incurring a hefty amount of money. Errors in software
can be functional or non-functional. Functional errors are related to the operations and
actions of software, whereas non-functional errors are related to customer expectations
and performance requirements. Function testing includes unit testing, system testing, and
acceptance testing, whereas non-function testing deals with evaluating the parameters
such as security, reliability, usability, and scalability. Software testing needed to ensure
the proper functioning of the software after updates are referred to as Regression Testing
[1]. Researchers have been rigorously working toward the development and validation of
various regression testing techniques. Regression Test Prioritization and Regression Test
Selection are the key regression testing techniques focused on in this paper. Regression
test selection and prioritization activities, when carried out in an endeavor to obtain prom-
ising results in the minimum possible time, are an NP—complete combinatorial optimi-
zation problem [2]. The taxonomy of Regression Test Selection and Prioritization tech-
niques is shown in Figure 1.

Figure 1. Taxonomy of Regression Test Selection and Prioritization.

Test Case Prioritization (TCP) [2] helps in ordering test cases based on certain criteria
such as maximization of fault coverage in order to reduce the testing cost and speed up
the delivery of the modified product. Regression test prioritization techniques try to reor-
der a regression test suite based on decreasing priority. The priority of test cases is estab-
lished using some predefined testing criterion. The test cases having higher priority are
preferred over lower priority ones in the process of regression testing [3]. Prioritization
can be achieved on the basis of one or more objectives such as faults, code coverage, cost
of execution, etc. Code coverage is a metric that measures the degree of coverage of the
program code by a particular test suite [3]. The improved performance of the prioritized
test suite in terms of reduced run time is a forever goal in this ever-time-constrained
world. Furthermore, intelligent prioritization would mean that more and more faults are
exposed as early as possible. Thus, the multi-objective goal is to deliver a regression test

Figure 1. Taxonomy of Regression Test Selection and Prioritization.

Test Case Prioritization (TCP) [2] helps in ordering test cases based on certain criteria
such as maximization of fault coverage in order to reduce the testing cost and speed
up the delivery of the modified product. Regression test prioritization techniques try to
reorder a regression test suite based on decreasing priority. The priority of test cases is
established using some predefined testing criterion. The test cases having higher priority
are preferred over lower priority ones in the process of regression testing [3]. Prioritization
can be achieved on the basis of one or more objectives such as faults, code coverage, cost
of execution, etc. Code coverage is a metric that measures the degree of coverage of the
program code by a particular test suite [3]. The improved performance of the prioritized
test suite in terms of reduced run time is a forever goal in this ever-time-constrained world.
Furthermore, intelligent prioritization would mean that more and more faults are exposed
as early as possible. Thus, the multi-objective goal is to deliver a regression test suite with
the capacity to reveal maximum faults in the least possible time. The prioritization problem
can thereby be stated as follows:

“Given: A test suite, T, the set of permutations of T, PT, and a function from PT to real
numbers, f: PT->R. To find T’ € PT such that (¥T”)(T” € PT)(T ‘’ !=T’)[f (T’) ≥ f (T”)].”

Mathematics 2023, 11, 2983 3 of 21

Test suite minimization or reduction seeks to minimize the number of test cases in
it by removing the redundant ones. These concepts of reduction and minimization are
interchangeable as all the reduction techniques may be utilized in producing a provisional
subset of the test suite, whereas minimization techniques permanently remove the test
cases. More formally, the test suite minimization problem is stated as follows [4]:

“To find a representative set of test cases from the original test suite that satisfies all
the requirements considered ‘adequate’ for testing the program”.

Test Case Selection (TCS), resembles test suite minimization; as both of them intend
to select few and effective test cases from the original test suite. The significant difference
is whether the selection criteria focus on modifications in the SUT or not. Test suite
minimization is generally built on the basis of metrics such as coverage measured from a
sole version of the PUT [5]. On the other hand, in TCS, test cases are picked up based on
the relevance of their execution to the variations between the original and the modified
versions of the SUT. While TCS techniques also aim to reduce the number of test cases,
the majority of these techniques focus on modified parts of the software under test. This
means that the emphasis is to identify the modified sections of the software under test. This
requires statistical analysis of the functional view of the software under test.

ACO_TCSP algorithm maps the real-world ants to digital ants while solving the
regression test selection and prioritization problem. This approach has been proposed and
validated and found to be very promising in earlier studies. Although, the major drawback,
as found in other ACO applications, was ACO_TCSP falling into the local optima due to
over-exploitation and less exploration of the solution space. The current study tries to solve
this problem by enhancing the search space (increasing the number of ants) and making the
exploitation more elite or intelligent. This work undertakes the following multi-objectives
to be achieved:

(1) Highest fault coverage achieved i.e., maximum faults should be caught by the test
suite, and

(2) The least possible test case execution time.

Hence, Enhanced ACO_TCSP has been proposed to achieve these two objectives, and
the technique has been validated on four benchmark programs.

ACO is an established and well-tested optimization approach. There are a huge
number of more recent optimization algorithms such as butterfly optimization algorithm
(BOA), water optimization algorithms (WOA), Trees social relations optimization algorithm
(TSR), red deer optimization algorithm (RDO), and many more. These have not been
chosen for the current research as it tries to improve an already existing, well-established
test case selection and prioritization algorithm that has already provided highly motivating
results on prioritization.

The remaining paper is structured as follows: Section 2 presents the related work.
Section 3 details the concepts of ACO and the limitations of the existing technique. Section 4
elucidates the proposed enhancements. Section 5 presents the implementation details of the
enhanced technique by giving the algorithmic steps. Section 6 presents the experimental
design. Section 7 presents the analysis of the results obtained. Sections 8 and 9 present the
discussion and conclusion respectively.

2. Related Work

The way nature and its living beings co-exist in harmony is astonishing. The last
two decades have witnessed extensive research in the area of developing and applying
nature-inspired techniques for solving various combinatorial optimization problems [6].
Nature-inspired techniques such as ACO (Ant Colony Optimization) [7–9], GA (Genetic Al-
gorithms), BCO (Bee Colony Optimization) [10,11], PSO (Particle Swarm Optimization) [12],
NSGA -II (Nondominated Sorting Genetic Algorithm II) [13], Bat-inspired algorithm [14],
flower pollination algorithm [15], cuckoo search algorithm [16,17], Cuscuta search [18],
CSA [19], and hybrid approaches [20,21] (combining two or more different approaches)
have already been applied to solve the regression test selection and prioritization problem.

Mathematics 2023, 11, 2983 4 of 21

There are other well-known regression testing techniques that deploy techniques such as
fuzzy expert systems [22] and online feedback information [23].

All the ants have eaten your sweets? Powerful nature inspires us to build some
artificial ants and achieve optimization goals. Inspired by the intelligent behavior of ants
in food foraging, Dorigo gave a new soft computing approach and named it Ant Colony
Optimization (ACO) [24]. This metaheuristic has already been applied to solve several
non-polynomial time-solvable problems [25]. As given by Singh et al. [7], ACO can be
applied to time-constrained test suite selection and prioritization. ACO variants have been
applied rigorously by various researchers working in the area. Some of them include:
epistasis based ACO [26], using ACO for prioritizing test cases with secure features [27]
time-constraint-based ACO [28], history-based prioritization using ACO [29], prioritizing
test cases based on test factors using ACO [30]. The widespread usage of ACO for test
case selection and prioritization highlights the fact that ACO is a very prolific technique
in the area. The improvements suggested in ACO [7,31,32] further ascertain that there
are limitations associated with the technique. A survey of ACO in software testing [33]
showed various limitations of ACO as identified by various researchers. This provided
the key motivation for the authors for the present work. Thus, an improved version
of the ACO technique for Test Case Selection and Prioritization has been proposed and
implemented. The enhancement proposed has been validated in terms of: (1) no complexity
overhead as compared to the previous approach, (2) improvement in correctness over the
previous approach tested on four benchmark programs, and (3) APFD analysis against
the traditional regression testing approaches [8]. The three enhancements proposed in
the current manuscript have not been proposed for modification together in any of the
above-mentioned related texts. Henceforth, the presented approach provides a new ACO
approach having combined enhancements.

3. Ant Colony Optimization

This section gives a conceptual view of ACO and explains the limitations of the existing
technique, thereby leading to the proposed enhancements in the subsequent section.

3.1. Concept

ACO is a popular metaheuristic method that provides a solution to many combina-
torial optimization problems [34–36]. It is inspired by the concept of stigmergy, which is
an indirect means of communicating with fellow members using the surrounding envi-
ronment. This complex yet effective mode of communication is utilized by ants for food
search. This working of ACO is shown in Figure 2. There are three possible paths (Path 1,
Path 2, Path 3) from the ant nest to the food source. Ants cannot see, yet they magnificently
coordinate within their colony for food search, with the use of a chemical substance known
as pheromone. While foraging for food and fetching it back to their nests, ants keep laying
the pheromone trail on the traversed path. The other ants thereby smell the maximum
amount of pheromone and start following that path. The interesting fact to notice here is,
that the ant on the minimum length path returns fastest, thus laying an additional amount
of pheromone on their forward and return journeys. This enhances the probability of
fellow ants taking this path. The ants taking this corresponding path will further drop
more pheromones on that path. Therefore, attracting more fellow ants to take up this path.
This process continues, and eventually, the whole colony of ants would converge to the
minimum length path (here Path 1 in Figure 2).

The optimization algorithm based on the artificial behavior of ants works iteratively
by the generation of an initial population. It then repeatedly endeavors to construct
candidate solutions by exploration and exploitation of the search space. The exploration is
guided by heuristic information and the experience gathered by the ants in the preceding
iterations (well-known as ‘pheromone trails’) via a shared pool of memory. Using the
concepts of using ACO, effective solutions have been achieved to many hard combinatorial
problems [8]. The heuristic function (that marks the quality of the candidate solution

Mathematics 2023, 11, 2983 5 of 21

during the construction phase), and the pheromone values (signifying the information
collected over different iterations) are the two major components of the working of ACO as
a solution to combinatorial problems.

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 22

(a) (b) (c)

Figure 2. Pheromone on various paths. (a) Before ants begin searching, (b) while ants are searching
for food, (c) finally, when all the ants follow the shortest path to the food source—the shortest path
from the nest to the food source.

The optimization algorithm based on the artificial behavior of ants works iteratively
by the generation of an initial population. It then repeatedly endeavors to construct can-
didate solutions by exploration and exploitation of the search space. The exploration is
guided by heuristic information and the experience gathered by the ants in the preceding
iterations (well-known as ‘pheromone trails’) via a shared pool of memory. Using the con-
cepts of using ACO, effective solutions have been achieved to many hard combinatorial
problems [8]. The heuristic function (that marks the quality of the candidate solution dur-
ing the construction phase), and the pheromone values (signifying the information col-
lected over different iterations) are the two major components of the working of ACO as
a solution to combinatorial problems.

3.2. Limitations of ACO
ACO has been magnificently used to yield effective solutions to various optimization

problems, yet its convergence has not been proven. This is also justified by the ACO ap-
proaches being approximation approaches. The general limitations include: slow conver-
gence speed [33] and the problem of subsiding in the local optimal solution [33]. The rea-
son behind it may be that the ACO updates the pheromone on the basis of the present
promising path, and subsequently, after certain iterations, the amount of pheromone on
this path rises substantially, while the pheromone for the probable worth path is frail. All
the ants are inclined to this promising path and it becomes extremely tough to skip this
path. Hence, the chances of marking the optimal solution being the locally optimal one,
are increased.

Practically it is not viable to re-run the whole original test suite for building confi-
dence in the modified software during regression testing. Thus, it becomes crucial to use
selection and prioritization for the tests. Current research undertakes the highest fault
coverage achieved in the least possible test case execution time as the objectives. ACO for
test selection and prioritization was proposed in [7], implemented as ACO_TCSP in [8],
and analyzed in [31,37]. From the analysis conducted in [31,37], some limitations in the
ACO_TCSP technique were discovered:
(1) Lower Termination condition (TC) values lead the ACO_TSCP to fall into the local

optima problem by restricting exploration of newer paths.

Figure 2. Pheromone on various paths. (a) Before ants begin searching, (b) while ants are searching
for food, (c) finally, when all the ants follow the shortest path to the food source—the shortest path
from the nest to the food source.

3.2. Limitations of ACO

ACO has been magnificently used to yield effective solutions to various optimization
problems, yet its convergence has not been proven. This is also justified by the ACO
approaches being approximation approaches. The general limitations include: slow con-
vergence speed [33] and the problem of subsiding in the local optimal solution [33]. The
reason behind it may be that the ACO updates the pheromone on the basis of the present
promising path, and subsequently, after certain iterations, the amount of pheromone on
this path rises substantially, while the pheromone for the probable worth path is frail. All
the ants are inclined to this promising path and it becomes extremely tough to skip this
path. Hence, the chances of marking the optimal solution being the locally optimal one,
are increased.

Practically it is not viable to re-run the whole original test suite for building confi-
dence in the modified software during regression testing. Thus, it becomes crucial to use
selection and prioritization for the tests. Current research undertakes the highest fault
coverage achieved in the least possible test case execution time as the objectives. ACO for
test selection and prioritization was proposed in [7], implemented as ACO_TCSP in [8],
and analyzed in [31,37]. From the analysis conducted in [31,37], some limitations in the
ACO_TCSP technique were discovered:

(1) Lower Termination condition (TC) values lead the ACO_TSCP to fall into the local
optima problem by restricting exploration of newer paths.

(2) Around 5% of the time, the ACO_TCSP could explore the optimum path, but due
to the lack of pheromone that could be deposited, it is not the best path, i.e., the
algorithm ended by meeting set TC criteria.

(3) Lower TC value directly implies a lower number of iterations. Hence, changes are
made in the algorithm to reach the set TC value as delayed as possible.

4. Proposed Enhancements

The major problem was falling into local optima due to a lack of explored search space
and over-exploitation at an early stage. To solve this problem, it has been tried to expand
the explored search space in each iteration while maintaining elite or intelligent exploitation
to confirm as early convergence as possible to the optimal solution. Balancing increased

Mathematics 2023, 11, 2983 6 of 21

exploration with the intelligence introduced into the manner of exploitation should ensure
that the run times are not adversely affected, while the solutions found are improved to
avoid local optima problems. The proposed enhancements have been elaborated as follows:

4.1. Expand the Searched Space

In order to enhance the search space, we propose an increment in the number of
exploring ants, which was earlier equal to the number of test cases in previous implementa-
tions. The enhanced algorithm asks the user to enter the enhancement factor from which
the number of digital ants to be sent exploring paths per test case would be computed.
Consequently, the overall number of ants grows multiple times the input entered by the
user. If ‘EF’ is the Enhancement Factor input by the user, and ‘|TS|’ represents the size of
the original test suite, the total amount of ants (after enhancement) per program run can be
considered to be:

No. of Digital Ants = (EF∗|TS|) (1)

The algorithm should now be able to overcome the problematic premature conver-
gence of ants to a local optimal result. As now the ants will travel through additional paths
in the initial iterations also, the number of paths to select the most promising one from for
the current iteration correspondingly is multiplied by EF. Given as:

Number of paths discovered in 1 iteration = EF∗|TS| (2)

Enhancing the number of digital ants could directly affect the run time of our algorithm,
but since the increase is by a constant enhancement factor (EF), it does not increase the
complexity. Moreover, expanding the search space should lead to earlier convergence
toward finding the optimal path. The same was also confirmed by the experimental results
achieved (as shown in the next sections). So, the small constant time increase caused due to
EF is counterbalanced by convergence at earlier iterations of the algorithm.

4.2. Elitism

In total, 5% of the earlier sample runs could find the optimum path if the overall best
path computation neglects the maximum pheromone over the optimum best path found in
any iteration. The calculation of the Global Best Path (GBP) was updated as:

GBP = min{max pheromone path, Best_Path in any iteration} (3)

This modification alone led to improved accuracy of ACO_TCSP by 4.1%. The elitist
strategy for choosing the GBP over following the normal ACO approach is thus formulated.
This step introduces eliteness in the process of exploiting already explored paths. This
intelligent exploitation would lead to early convergence to the optimal solution. while at
the same time, an increase in exploration would ensure the algorithm from falling into the
local optima problems.

4.3. Modifying Total Time Calculation

The earlier algorithm took the MAX execution time (MET) of the local paths discovered
in an iteration. The stopping criteria (TC) were compared with the MET added in every
iteration. The modification to resolve this issue is recalculating MET using the execution
time corresponding to the Local Best Path (LBP) discovered in every iteration.

MET = MET + ExecTime of LBP (4)

The modification leads to an increased number of iterations for which the ACO_TCSP
would run before reaching the set TC value. It leads to increased exploration and increased
intelligent exploitation of paths and hence more chances of discovering the optimal path. It
is of utmost importance to make sure that modifying MET or enhancing the search space
does not adversely affect the execution time of the improved algorithm. Hence, the same

Mathematics 2023, 11, 2983 7 of 21

was taken care of by ensuring that the algorithm is time bounded by the user-entered
TC value and cannot run after MET has reached TC. Hence, the Enhanced ACO_TCSP
algorithm ensures better results without an increase in the run time of the process.

5. Implementing the Enhancements

Given ‘TS’ (Test Suite) with |TS| test cases in it, the selection and prioritization
problem is specified as follows:

Find the subset ‘S’ of test suite ‘TS’, so as to have ‘m’ test cases (m < |TS|, S TS). The
subset ‘S’ is selected with the aim of maximum fault coverage and prioritized on the basis
of the minimum execution time taken to run the entire subset.

5.1. Problem Representation and Execution Steps

A mapping for the selection/prioritization problem as an undirected graph G (N, E)
having N and E as the set of nodes and edges correspondingly was performed. Test cases
were mapped as the nodes of the graph. Here, ‘wi’ represents the cost of ‘ith ‘edge in the
graph. This cost of edges maps to the trail of pheromone deposited on the edges ei ε E.
Pheromone deposition was correspondingly mapped to the multiple objectives of (1) fault
coverage ‘fi’ on the current path achieved within (2) time constraint, ’Zi’. Originally, the
pheromone or cost on all the edges is nil.

• MAX represents the overall Time Constraint.
• Z stands for an intermediary variable used for TC calculations.
• {a1 × EF, a2 × EF, . . . , an × EF} represents a set of artificial ants, where ‘EF’ is the

enhancement factor.
• S1 to S (n × EF) be the sets in which (n × EF) ants maintain the record of the covered

test cases.

The execution steps of Enhanced ACO_TCSP are detailed below:
Step 1: Initialization—Generating N × EF ants to be sent for exploring the solution

space. All other parameters are initialized accordingly.
Step 2: Exploration—Once generated, the ants begin searching in all random directions

initially. As they move from one test case to another, their paths and killed faults are
constantly updated on the way.

Step 3: Pheromone deposition—Once a probable solution has been found by each
ant in the current iteration, pheromones are deposited on the most effective path (causing
minimum time to run the test cases).

Step 4: Iterating—Steps 1 to 2 are repeated over and over till the stopping TC is
achieved. Now there are many iterations and the most effective path from every iteration
has been found.

Step 5: Finding GBP—Out of all the paths discovered during all the repetitions, GBP is
the one with the least running time. This represents the selected and prioritized set of test
cases as the final answer.

These steps are depicted in Figure 3.

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 22

Figure 3. Working of Enhanced ACO_TCSP for Test Case Selection and Prioritization.

5.2. Modified Algorithm and its Complexity
Aiming to ascertain that the cost of applying the technique is no more than perform-

ing the complete regression testing, complexity has to be calculated. The complexities of
all the sequential stages are added to compute the total complexity of the new proposed
Enhanced ACO_TCSP (Algorithm 1) (Enhancements from [7,8]).

Algorithm 1: Enhanced ACO_TCSP
Stage-1
1. Initialization Statement-wise complexity
 Set Wi = 0 …………………………..1
 Set TC = MAX (User Defined)
 1
 Set EF = Enhancement Factor (User defined)…….…………………………....1
 Set Zx = 0 for all x = 1 to (N × EF) ……………………N × EF
 Create N × EF artificial ants {a1, a2,……. a(N*EF)} ……………………N × EF
…S1, S2, ….. S(N × EF) = NULL ……………………N × EF
Stage-2
2. Do // LOOP 3—outermost
 For x = 1 to (N × EF) // LOOP 2 ………………. Runs N × EF times
 Sx = Sx + { txEF } // Initial test case for ant ax is ……………………..1
 TmpT = txEF // the starting vertex for ant ax on the graph ...………1

 Do // Loop 1—Innermost loop
 t = Call_select_test_case (ax, tmpT) ………………………………6
 Update Sx = Sx + {t} .…………………………………..1
 Zx = Zx + texec_time …………………………………...1
 tmpT = t ………….………………………………1
 While (total faults are covered) // Max N times (no of all Test Cases)
 // Loop 1 (Innermost loop)—ENDS
 EndFor // Loop 2 ENDS

Figure 3. Working of Enhanced ACO_TCSP for Test Case Selection and Prioritization.

Mathematics 2023, 11, 2983 8 of 21

5.2. Modified Algorithm and its Complexity

Aiming to ascertain that the cost of applying the technique is no more than performing
the complete regression testing, complexity has to be calculated. The complexities of all the
sequential stages are added to compute the total complexity of the new proposed Enhanced
ACO_TCSP (Algorithm 1) (Enhancements from [7,8]).

Algorithm 1: Enhanced ACO_TCSP

Stage-1
1.Initialization Statement-wise complexity

Set Wi = 0 . 1
Set TC = MAX (User Defined)

. 1
Set EF = Enhancement Factor (User defined) . 1
Set Zx = 0 for all x = 1 to (N × EF) N × EF
Create N× EF artificial ants {a1, a2, a(N*EF)} N× EF

... S1, S2, S(N × EF) = NULL N × EF
Stage-2
2. Do // LOOP 3—outermost

For x = 1 to (N × EF) // LOOP 2 Runs N × EF times
Sx = Sx + { txEF } // Initial test case for ant ax is 1
TmpT = txEF // the starting vertex for ant ax on the graph 1

Do // Loop 1—Innermost loop
tt = Call_select_test_case (ax, tmpT) . 6
tUpdate Sx = Sx + {t} . 1
tZx = Zx + texec_time . 1
tmpT = t . 1

While (total faults are covered) // Max N times (no of all Test Cases)
// Loop 1 (Innermost loop)—ENDS
EndFor // Loop 2 ENDS

minTime = min {Zx} . N * EF
currTime = CuurTime + minTime . 1
Zx = 0, for all x =0 to N × EF . N × EF
Update pheromone on all egdes of bestPath with minTime n − 1
Evaporate k% pheromonee from each edge . n − 1
Last_Path = Sx for k of the last iteration of Loop2 . 1
Sx = null for all x . EF

While (TC ≥ currTime) // End of Loop 3

// MODULE select_test_case is presented below (As taken from [7,8])
select_test_case (x, next_node)
{
If(max_pheromene edge out of all the edges from next_node to a node ‘k’
(W[nxtnode][k]) does not exist in S[i][1 . . . N]) 2

Then
Return ‘k’ . 1

Else
Select a random edge [next_node,k], from next_node to node ‘k’ not existing in

P[i][1 . . . N], from all edges having next max (W[nxtnode][h])
. 3

Return ‘h . 1
}

Stage 1 represents the initialization stage. The cost of the edges is initialized to be nil.
EF is read from the user and corresponding digital ants are created. A set of paths and
other variables are also initialized as above. The total complexity of Stage 1, say S1, can be

Mathematics 2023, 11, 2983 9 of 21

computed by adding the individual complexity of all the sequential statements from above
as follows:

S1 = 1 + 1 + 1 + (n× EF) + (n× EF) (5)

S1 = 3 + 3× (n× EF) (6)

The exploration of various paths keeping in mind the multiple objectives of fault
coverage and budget time happens in this stage. Over the various repetitions of the do-
while loop, pheromone updates occur, causing the next digital ants to exploit the already
discovered potential paths. The complexity of Stage 2, say S2, can be calculated stepwise
from the above individual statement complexities as shown below:

Complexity of Loop 1 = n × (6 + 1 + 1 + 1) = 10 × n (7)

Complexity of Loop 2 = n × EF × (2 + (10 × n)) = 2 × EF × n + 10 × EF × n2 (8)

Complexity of Loop 3 = Const × (3 × EF + 2 × (n − 1) + 2 + (2 × EF × n + 10 × EF × n2)) (9)

(Taking ‘C’ to be some positive constant)

S2 = C× (10× EF× n2 + 2× EF× n + 2× n + 3× EF) (10)

Stage-3
Stage 3 takes constant time steps to find the best out of the potential best paths accord-

ing to the pre-decided multi-objectives. This stage takes (9—constant time instructions) as
the worst-case complexity

S3 = 9
Thus, the Total Complexity of the improved algorithm can be calculated as:

S = Complexity of (Stage 1 + Stage 2 + Stage 3) (11)

S = S1 + S2 + S3 (12)

S = 3 + 3 × (n × EF) + C × (10 × EF × n2 + 2 × EF × n + 2 × n + 3 × EF) +9 (13)

S = C × 10 × EF × n2 + C × 2 x EF × n + 3 × EF × n + C × 2 × n + C × 3 × EF + 12 (14)

S ≤ C × 10 × EF × n2 + C × 2 × EF × n + 3 × EF × n + C × 2 × n + C × 3 × EF + 12 × EF (15)

(taking C1 = C x 3 +12, to be some other positive constant)

S ≤ C × 10 × EF × n2 + C × 2 × EF × n + 3 × EF × n + C × 2 × n + C1 × EF (16)

S ≤ C × 10 × EF × n2 + C × 2 × EF × n + 3 × EF × n + C × 2 × n × EF + C1 × EF × n (17)

(taking C2 = 3 + C × 2 + C1 + C × 2)

S ≤ C × 10 × EF × n2 + C2 × EF × n (18)

S ≤ C × 10 × EF × n2 + C2 × EF × n × n

(taking C3 = C × 10 + C2)
S ≤ C3 × EF × n2 (19)

(Na is also a positive constant, thus C4 = C3 × EF, be another positive constant)

S ≤ C4 × n2 (20)

Therefore, the overall complexity of the proposed can be approximated as n2, or in
terms of Big-O notation, it is O(n2) or O(|TS|2). This is the same as the complexity of the

Mathematics 2023, 11, 2983 10 of 21

old ACO_TCSP algorithm. Thus, the proposed approach is found to be as time efficient as
the earlier approach (ACO_TCSP).

6. Experimental Design

The proposed approach (Enhanced ACO_TCSP) has been developed in C++. The
organization of the code included ten modules and five global functions. The time for
executing the code was computed with the help of a clock() function (available in the file
“time.h”). The code was implemented on Macbook Pro 2011 model hardware, macOS
10.12 Sierra operating system and the C++ runtime environment used to run the code
was Code::Blocks.

6.1. Benchmark Programs

We used 4 programs as benchmark programs. P1, P2, P3, and P4 were chosen so that
the cases for minimum (P8), maximum (P2), and medium (P1, P3) correctness found by the
previous algorithm could be compared with the proposed algorithm. Concise depiction of
the programs, the lines of code in them, the mutations induced, and the test suite execution
times are listed in Table 1.

Table 1. Depiction of Benchmark programs.

Program Program Title Lines of Code
(kloc) No. of Mutations Test Suite

Size (TS)
Execution Time

(ms)

P1 Coll_Admison 0.281 5 9 1.0532

P2 Triangle_sides 0.037 6 19 3.82

P3 Basic_calculator 0.101 9 25 0.825

P4 Railways Booking 0.129 10 26 1.77

6.2. Design

Each benchmark program was executed on 4 varying values of the EF (Enhancement
Factor), along with 5 varying TC values. ACO being an approximation technique, does not
yield the same result for the same set of inputs every time. Henceforth, 10 runs for each EF
value for each program and each TC value were recorded (10 * 4 * 5 = 200 runs for each
program). Every execution run returns the path found (may be optimal or non-optimal).
The time constraints chosen as the termination criteria were chosen to be 200, 300, 400,
500, and 600 with forty runs of each program. Reduction in total execution time needed,
resultant optimality of solution, and the correctness of the technique were obtained from
the output data. We also found the percentage improvement in correctness using the
new algorithm.

6.3. ACO Parameter Settings for Enhanced ACO_TCSP

To maintain the levels of exploration (finding new paths) and exploitation (using
existing pheromone knowledge) five ACO parameters need to be set in order to produce
the near optimum results. Various parameter settings have been suggested and used
over the years [8,38,39]. On the basis of experimentation and results from [8] and the pro-
vided enhancements, the parameter settings used for Enhanced ACO_TCSP are described
in Table 2.

Alpha α, and Beta β are the control parameters to keep in check the exploration versus
exploitation balance of ACO algorithm. The values chosen were kept the same as used by
many researchers and in [7,8]. 10% Evaporation rate was used to make sure that digital
ants map to real ants, and that the pheromone does not keep on depositing, it evaporates at
the end of each iteration. Additionally, +1 was tuned to be the amount of pheromone to be
deposited on the edges of the best path. Q0 is a constant used for calculating the amount of
pheromone to be evaporated joint with the evaporation rate. The value of Na was updated

Mathematics 2023, 11, 2983 11 of 21

as per the proposed enhancements. To counter-balance the enhanced exploration, the
value of τ has been updated to ensure elitism and q0 ensures convergence. The rest of the
parameter settings are the same as those used in the earlier version [8].

Table 2. Parameter Values used for Enhanced ACO_TCSP.

Na N * EF

A 1.0 (Parameter to control exploration level)

B 0.2 (Parameter to keep exploitation in check)

P 0.1 (Evaporation Rate of pheromone—10% as used by majority researchers)

T 1.0 (Amount of Pheromone to be deposited on best path edges)

q0 1.0 (chosen constant used on calculation of pheromone to be evaporated)

7. Result Analysis

We now depict and explain the results of the implementation of the proposed enhanced
technique here.

7.1. Execution Time of Paths Discovered

The details about the path and their corresponding execution time for four open-source
programs have been given here. The combined results are shown in the next section.

The Enhanced ACO_TCSP was repeated for 10 Runs with EF values taken as 1, 2, 3,
and 4 for program P1 using five values of TC. The averaged output of 10 runs for four
values of the EF is summarized in Table 3. The details of the rest of the programs have
been omitted due to redundancy and space constraints. However, the graphs depicting the
results of the execution of all four programs have been depicted in the next section.

Possible best paths discovered in each of the 40 (5 TC, 4 EF) runs of Enhanced
ACO_TCSP were compared for their execution times for all 4 test programs and are de-
picted graphically in Figure 4. Unlike previous results, a very slight decreasing trend is
observed for increasing values of EF. It can be thus derived from here that an increased
number of ants (proportional directly to the EF) leads to decreased execution time for the
possible best paths. The exception for P2 is that the possible best path was found every
time due to multiple possible best paths possible in the problem.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 22

Possible best paths discovered in each of the 40 (5 TC, 4 EF) runs of Enhanced
ACO_TCSP were compared for their execution times for all 4 test programs and are de-
picted graphically in Figure 4. Unlike previous results, a very slight decreasing trend is
observed for increasing values of EF. It can be thus derived from here that an increased
number of ants (proportional directly to the EF) leads to decreased execution time for the
possible best paths. The exception for P2 is that the possible best path was found every
time due to multiple possible best paths possible in the problem.

Figure 4. Best Path Execution Time of Enhanced ACO_TCSP versus EF.

The average number of iterations over 40 runs each, observed in the case of TC and
EF are presented in Figure 5. A steady surge in the number of iterations needed by En-
hanced ACO_TCSP with an increase in input EF values can be observed. This is promising
and encouraging because this implies that there is a reduction in the execution time of
possible best paths earlier in the iterations. This causes more iterations to take place before
reaching the stopping TC. Thereby, higher values of EF, indicate a rise in the number of
iterations taken by Enhanced ACO_TCSP for the execution of the regression test suite un-
der consideration, for the generation of the selected and prioritized test suite as resultant.

Figure 5. Average No. of Iterations v/s No. of ants sent.

The average iteration number at which the optimum path is found by the Enhanced
ACO_TCSP execution out of 40 runs and its variation with different EF (no. of ants) is
shown in Figure 6 (tabulated in the last column of Table 2 also). A steady fall in the itera-
tion number capable of revealing the optimum path with the rising EF is clearly observa-
ble. P2 portrays an exception by revealing the optimum path in first iteration for all 200
test runs each. Consequently, by enhancing EF, the likelihood of locating the optimum
path arises at even earlier stages of the improved technique. This fall in the ‘accurate

0

10

20

30

40

50

1 2 3 4

Best Path Execution Time

P1 P2 P3 P4

0

10

20

30

1 2 3 4

No. of iterations vs no. of ants

P1 P2 P3 P4

Figure 4. Best Path Execution Time of Enhanced ACO_TCSP versus EF.

Mathematics 2023, 11, 2983 12 of 21

Table 3. Enhanced ACO_TCSP on P1 with varying TC & EF.

RUN Na Running
Time (sec)

Best
Path

Total
Exec.
Time

Best P
Exec.
Time

No. of
Test Cases
Covered

No. of
Iterations

Best P
Found at
Iteration

Optimal
P Found

at Iteration

TC = 200

ants 1 0.054945 8 82.10127 18.796 2 10.7 2.4 2.25

ants 2 0.054945 9 82.3225 18.563 2 10.8 3.8 4

ants 3 0.049451 10 82.54895 18.33 2 10.9 3.2 3.2

ants 4 0.054945 10 82.54373 18.33 2 11 2.3 2.3

avg 0.053571 82.37911 18.50475 2 10.85 2.925 2.945946

TC = 300

ants 1 0.043956 6 80.87737 20.096 2.1 15.3 3.2 3.666667

ants 2 0.06044 9 82.23752 18.647 2 16.2 4.5 4.555556

ants 3 0.054945 10 82.54373 18.33 2 16.9 1.8 1.8

ants 4 0.065934 10 82.53329 18.33 2 17 1.7 1.7

avg 0.056319 82.04798 18.85075 2.025 16.35 2.8 2.8

TC = 400

ants 1 0.049451 8 81.96406 18.946 2 20.8 7.2 7.5

ants 2 0.054945 10 82.54373 18.33 2 22 3.4 3.4

ants 3 0.06044 10 82.53851 18.33 2 22 1.3 1.3

ants 4 0.071429 10 82.52808 18.33 2 22 1.8 1.8

avg 0.059066 82.39359 18.484 2 21.7 3.425 3.289474

TC = 500

ants 1 0.054945 9 82.3225 18.563 2 26.5 6.2 6.555556

ants 2 0.054945 10 82.54373 18.33 2 27.4 3.7 3.7

ants 3 0.06044 10 82.53851 18.33 2 27.8 2.2 2.2

ants 4 0.071429 10 82.52808 18.33 2 27.4 1.3 1.3

avg 0.06044 82.4832 18.38825 2 27.275 3.35 3.358974

TC = 600

ants 1 0.054945 10 82.54373 18.33 2 32.2 5.6 5.6

ants 2 0.065934 10 82.53329 18.33 2 32.5 5.7 5.7

ants 3 0.06044 10 82.53851 18.33 2 32.8 4.2 4.2

ants 4 0.076923 10 82.52286 18.33 2 33 1.8 1.8

avg 0.06456 82.5346 18.33 2 32.625 4.325 4.325

The average number of iterations over 40 runs each, observed in the case of TC and EF
are presented in Figure 5. A steady surge in the number of iterations needed by Enhanced
ACO_TCSP with an increase in input EF values can be observed. This is promising and
encouraging because this implies that there is a reduction in the execution time of possible
best paths earlier in the iterations. This causes more iterations to take place before reaching
the stopping TC. Thereby, higher values of EF, indicate a rise in the number of iterations taken
by Enhanced ACO_TCSP for the execution of the regression test suite under consideration,
for the generation of the selected and prioritized test suite as resultant.

Mathematics 2023, 11, 2983 13 of 21

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 22

Possible best paths discovered in each of the 40 (5 TC, 4 EF) runs of Enhanced
ACO_TCSP were compared for their execution times for all 4 test programs and are de-
picted graphically in Figure 4. Unlike previous results, a very slight decreasing trend is
observed for increasing values of EF. It can be thus derived from here that an increased
number of ants (proportional directly to the EF) leads to decreased execution time for the
possible best paths. The exception for P2 is that the possible best path was found every
time due to multiple possible best paths possible in the problem.

Figure 4. Best Path Execution Time of Enhanced ACO_TCSP versus EF.

The average number of iterations over 40 runs each, observed in the case of TC and
EF are presented in Figure 5. A steady surge in the number of iterations needed by En-
hanced ACO_TCSP with an increase in input EF values can be observed. This is promising
and encouraging because this implies that there is a reduction in the execution time of
possible best paths earlier in the iterations. This causes more iterations to take place before
reaching the stopping TC. Thereby, higher values of EF, indicate a rise in the number of
iterations taken by Enhanced ACO_TCSP for the execution of the regression test suite un-
der consideration, for the generation of the selected and prioritized test suite as resultant.

Figure 5. Average No. of Iterations v/s No. of ants sent.

The average iteration number at which the optimum path is found by the Enhanced
ACO_TCSP execution out of 40 runs and its variation with different EF (no. of ants) is
shown in Figure 6 (tabulated in the last column of Table 2 also). A steady fall in the itera-
tion number capable of revealing the optimum path with the rising EF is clearly observa-
ble. P2 portrays an exception by revealing the optimum path in first iteration for all 200
test runs each. Consequently, by enhancing EF, the likelihood of locating the optimum
path arises at even earlier stages of the improved technique. This fall in the ‘accurate

0

10

20

30

40

50

1 2 3 4

Best Path Execution Time

P1 P2 P3 P4

0

10

20

30

1 2 3 4

No. of iterations vs no. of ants

P1 P2 P3 P4

Figure 5. Average No. of Iterations v/s No. of ants sent.

The average iteration number at which the optimum path is found by the Enhanced
ACO_TCSP execution out of 40 runs and its variation with different EF (no. of ants) is
shown in Figure 6 (tabulated in the last column of Table 2 also). A steady fall in the iteration
number capable of revealing the optimum path with the rising EF is clearly observable. P2
portrays an exception by revealing the optimum path in first iteration for all 200 test runs
each. Consequently, by enhancing EF, the likelihood of locating the optimum path arises at
even earlier stages of the improved technique. This fall in the ‘accurate iteration number’
(iteration that reveals the optimal path for the first time is called the ‘accurate iteration’),
with the increase in EF is the couple effect caused by the improved exploration search space
(that now avoids falling into local optima that could lead to inaccurate iterations), and elite
exploitation of the earlier explored paths.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 22

iteration number’ (iteration that reveals the optimal path for the first time is called the
‘accurate iteration’), with the increase in EF is the couple effect caused by the improved
exploration search space (that now avoids falling into local optima that could lead to in-
accurate iterations), and elite exploitation of the earlier explored paths.

Figure 6. Averaged iteration number finding the Optimal path v/s EF.

The fact that ACO provides an optimum reduction of execution time has been wit-
nessed in the previous section. The results have been averaged over 40 runs with four
varying values of EF on the benchmark programs. The graphical analysis is presented in
Figure 7. There is a slight rise in the reduction of execution time with the rise in EF. The
observations are a result of the enhancements carried out in the technique. Better results
have been yielded even at lesser values of TC, and are well-adjusted by the enhanced
number of ants.

Figure 7. % execution time reduction for Enhanced ACO_TCSP selected test cases v/s EF.

7.2. Correctness of the Technique
This sub-section tries to prove the correctness of the technique, both theoretically as

well as experimentally using the results of our empirical evaluation.
Theoretically, the improved algorithm ensures that a path is completed if all faults

are found or all test cases have been visited. This ensures that the algorithm would stop

0
1
2
3
4
5
6
7

1 2 3 4

Optimal Path found in Iteration

P1 P2 P3 P4

70

75

80

85

90

1 2 3 4

% Execution Time Reduction

P1 P2 P3 P4

Figure 6. Averaged iteration number finding the Optimal path v/s EF.

The fact that ACO provides an optimum reduction of execution time has been wit-
nessed in the previous section. The results have been averaged over 40 runs with four
varying values of EF on the benchmark programs. The graphical analysis is presented in
Figure 7. There is a slight rise in the reduction of execution time with the rise in EF. The
observations are a result of the enhancements carried out in the technique. Better results
have been yielded even at lesser values of TC, and are well-adjusted by the enhanced
number of ants.

Mathematics 2023, 11, 2983 14 of 21

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 22

iteration number’ (iteration that reveals the optimal path for the first time is called the
‘accurate iteration’), with the increase in EF is the couple effect caused by the improved
exploration search space (that now avoids falling into local optima that could lead to in-
accurate iterations), and elite exploitation of the earlier explored paths.

Figure 6. Averaged iteration number finding the Optimal path v/s EF.

The fact that ACO provides an optimum reduction of execution time has been wit-
nessed in the previous section. The results have been averaged over 40 runs with four
varying values of EF on the benchmark programs. The graphical analysis is presented in
Figure 7. There is a slight rise in the reduction of execution time with the rise in EF. The
observations are a result of the enhancements carried out in the technique. Better results
have been yielded even at lesser values of TC, and are well-adjusted by the enhanced
number of ants.

Figure 7. % execution time reduction for Enhanced ACO_TCSP selected test cases v/s EF.

7.2. Correctness of the Technique
This sub-section tries to prove the correctness of the technique, both theoretically as

well as experimentally using the results of our empirical evaluation.
Theoretically, the improved algorithm ensures that a path is completed if all faults

are found or all test cases have been visited. This ensures that the algorithm would stop

0
1
2
3
4
5
6
7

1 2 3 4

Optimal Path found in Iteration

P1 P2 P3 P4

70

75

80

85

90

1 2 3 4

% Execution Time Reduction

P1 P2 P3 P4

Figure 7. % execution time reduction for Enhanced ACO_TCSP selected test cases v/s EF.

7.2. Correctness of the Technique

This sub-section tries to prove the correctness of the technique, both theoretically as
well as experimentally using the results of our empirical evaluation.

Theoretically, the improved algorithm ensures that a path is completed if all faults
are found or all test cases have been visited. This ensures that the algorithm would stop
within the computed complexity. In addition, the pheromone is then deposited on the
best path from each iteration, ensuring exploitation of already found paths. ACO is a
randomized approximation approach. Hence, the authors do not claim that the final test
suite has minimum execution time. However, it is definitely found that the best APFD or
fault coverage would be achieved by the final test suite. Experimentation will prove how
many times ACO results in minimum execution time as well.

In order to prove the correctness of the proposed technique, Figure 8, Figure 9, and
Table 4 shall be used to depict the correctness of the proposed work.

The percentage correctness of the Enhanced ACO_TCSP versus the EF has been picturized
graphically in Figure 8. A very motivating and clear observation is the rise in the correctness
achieved with the rise in EF (no. of ants). This validates the improvement and enhancements
made in the prior ACO technique, which now is not falling to the local optima problems.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 22

within the computed complexity. In addition, the pheromone is then deposited on the best
path from each iteration, ensuring exploitation of already found paths. ACO is a random-
ized approximation approach. Hence, the authors do not claim that the final test suite has
minimum execution time. However, it is definitely found that the best APFD or fault cov-
erage would be achieved by the final test suite. Experimentation will prove how many
times ACO results in minimum execution time as well.

In order to prove the correctness of the proposed technique, Figures 8, 9, and Table 4
shall be used to depict the correctness of the proposed work.

Table 4. Percentage improvement in Correctness Achieved by Enhanced ACO_TCSP.

Prog. No. OLD % Correctness NEW %
Correctness

% Improvement

P1 65.714 95 44.565846
P3 100 100 0
P6 47.143 79.5 68.635853
P8 18.571 46 147.69802

Figure 8. Percentage Correctness Achieved by Enhanced ACO v/s EF.

The percentage correctness of the Enhanced ACO_TCSP versus the EF has been pic-
turized graphically in Figure 8. A very motivating and clear observation is the rise in the
correctness achieved with the rise in EF (no. of ants). This validates the improvement and
enhancements made in the prior ACO technique, which now is not falling to the local
optima problems.

82
96 100 100100

100
100 100

50
66

84 94

24
34

52

74

0
20
40
60
80

100
120

1 2 3 4

% Correctness

P1 P2 P3 P4

Figure 8. Percentage Correctness Achieved by Enhanced ACO v/s EF.

Mathematics 2023, 11, 2983 15 of 21Mathematics 2023, 11, x FOR PEER REVIEW 16 of 22

Figure 9. Percentage Improvement in Correctness Achieved by Enhanced ACO.

Figure 9 depicts the improvement of percentage correctness achieved by the En-
hanced ACO_TCSP approach. The achieved percentage improvement is nearly 50% in
general, while for the earlier worst case of P4 using ACO_TCSP, an improvement of
147.7% is achieved using Enhanced ACO_TCSP. This clearly proves that the proposed and
improved algorithm is better than the old ACO_TCSP algorithm.

7.3. APFD and Statistical Analysis
In order to obtain APFD (Average Percentage of Faults Detected), we calculated the

area below the plotted line using a graph plot drawn between % of faults detected with
the number of test cases needed. The notations used for calculation of APFD are:

‘TS’: the test suite containing the set of ‘|T|’ test cases,
‘F’: the set of ‘|F|’ faults revealed using ‘TS’.
For prioritization of test suite ‘TS’, let TFi denote the priority order of the initial test

case revealing the ith fault. The APFD for ‘TS’ can be obtained from the following equation:

APFD = 1 𝑇𝐹1 + ⋯ + 𝑇𝐹𝑚|𝑇| ∗ |𝐹| + 12 ∗ |𝑇| (21)

Although, APFD is the popularly used criteria for the evaluation of the techniques
used in the prioritization of test cases. Maximization of the APFD is not the objective of
test case prioritization techniques. Maximization of APFD is a possibility when it is known
in advance which faults are killed by a given test suite, thereby implying that the execu-
tion of entire test cases is already completed. Then, there would be absolutely no need for
prioritization of test cases. APFD is thus needed after the task of prioritization for the
evaluation of the prioritization technique.

The Enhanced ACO_TCSP orderings achieved for the four sample programs have
been empirically evaluated (with respect to: No order, Random order, Reverse order, and
optimum order of the test cases). These approaches are evaluated using APFD. Figures 9–
12 depict the results obtained. It is evident that ACO attains results similar to that of opti-
mum ordering, and has been shown to outweigh the reference techniques in terms of %
of fault coverage achieved.

44.57

0.00

68.64

147.70

0
20
40
60
80

100
120
140
160

P1 P2 P3 P4

Pe
rc

en
ta

ge

% Improvement in Correctness

Figure 9. Percentage Improvement in Correctness Achieved by Enhanced ACO.

Table 4. Percentage improvement in Correctness Achieved by Enhanced ACO_TCSP.

Prog. No. OLD % Correctness NEW %
Correctness % Improvement

P1 65.714 95 44.565846

P3 100 100 0

P6 47.143 79.5 68.635853

P8 18.571 46 147.69802

Figure 9 depicts the improvement of percentage correctness achieved by the Enhanced
ACO_TCSP approach. The achieved percentage improvement is nearly 50% in general,
while for the earlier worst case of P4 using ACO_TCSP, an improvement of 147.7% is
achieved using Enhanced ACO_TCSP. This clearly proves that the proposed and improved
algorithm is better than the old ACO_TCSP algorithm.

7.3. APFD and Statistical Analysis

In order to obtain APFD (Average Percentage of Faults Detected), we calculated the
area below the plotted line using a graph plot drawn between % of faults detected with the
number of test cases needed. The notations used for calculation of APFD are:

‘TS’: the test suite containing the set of ‘|T|’ test cases,
‘F’: the set of ‘|F|’ faults revealed using ‘TS’.
For prioritization of test suite ‘TS’, let TFi denote the priority order of the initial test

case revealing the ith fault. The APFD for ‘TS’ can be obtained from the following equation:

APFD = 1− TF1 + . . . + TFm
|T|∗|F| +

1
2∗|T| (21)

Although, APFD is the popularly used criteria for the evaluation of the techniques
used in the prioritization of test cases. Maximization of the APFD is not the objective of
test case prioritization techniques. Maximization of APFD is a possibility when it is known
in advance which faults are killed by a given test suite, thereby implying that the execution
of entire test cases is already completed. Then, there would be absolutely no need for
prioritization of test cases. APFD is thus needed after the task of prioritization for the
evaluation of the prioritization technique.

The Enhanced ACO_TCSP orderings achieved for the four sample programs have
been empirically evaluated (with respect to: No order, Random order, Reverse order, and
optimum order of the test cases). These approaches are evaluated using APFD. Figures 9–12

Mathematics 2023, 11, 2983 16 of 21

depict the results obtained. It is evident that ACO attains results similar to that of optimum
ordering, and has been shown to outweigh the reference techniques in terms of % of fault
coverage achieved.

From Figure 10, it can be inferred that the same APFD value of 72.22% is achieved for
the optimum and the ACO ordering for P1. Similar results are yielded for other programs
also, as depicted in Figures 11–13.

The best APFD results achieved using the improved ACO algorithm, as depicted
above, ensure that not only the maximum faults are covered in the entire test suite, but also
maximum faults are revealed at earlier stages of running the prioritized test suite. These
further motivate us to use the Enhanced ACO_TCSP algorithm.

In order to further ascertain the efficiency of our proposed work, we statistically ana-
lyzed the performance of existing ACO and the proposed Enhanced ACO_TCSP approach.
We use the Independent Two Sample t-Test for statistical analysis. The objective here is
to inspect if the proposed technique is more efficient than its earlier version. For this, we
apply a t-test to compare % correctness and % time reduction achieved in the case of the
four benchmark programs.

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 22

Figure 10. APFD for P1.

From Figure 10, it can be inferred that the same APFD value of 72.22% is achieved
for the optimum and the ACO ordering for P1. Similar results are yielded for other pro-
grams also, as depicted in Figures 11–13.

Figure 11. APFD for P2.

0

0.2

0.4

0.6

0.8

1

0 11.11 22.22 33.33 44.44 55.55 66.66 77.77 88.88 100

%
 o

f f
au

lts
 co

ve
re

d

% of test suite covered

APFD for Program 1
No Order
72.22%

Random
Order
65.55%
Reverse
Order
65.55%
Optimal
72.22%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.
00

5.
26

10
.5

3

15
.7

9

21
.0

5

26
.3

2

31
.5

8

36
.8

4

42
.1

1

47
.3

7

52
.6

3

57
.8

9

63
.1

6

68
.4

2

73
.6

8

78
.9

5

84
.2

1

89
.4

7

94
.7

4

10
0.

00

%
 o

f f
au

lts
 co

ve
re

d

% of test suite covered

APFD for Program 2
No Order
90.35%

Random
Order
86.84%
Reverse
Order
83.33%
Optimum
Order
96.49%
ACO Order
96.49%

Figure 10. APFD for P1.

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 22

Figure 10. APFD for P1.

From Figure 10, it can be inferred that the same APFD value of 72.22% is achieved
for the optimum and the ACO ordering for P1. Similar results are yielded for other pro-
grams also, as depicted in Figures 11–13.

Figure 11. APFD for P2.

0

0.2

0.4

0.6

0.8

1

0 11.11 22.22 33.33 44.44 55.55 66.66 77.77 88.88 100

%
 o

f f
au

lts
 co

ve
re

d

% of test suite covered

APFD for Program 1
No Order
72.22%

Random
Order
65.55%
Reverse
Order
65.55%
Optimal
72.22%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.
00

5.
26

10
.5

3

15
.7

9

21
.0

5

26
.3

2

31
.5

8

36
.8

4

42
.1

1

47
.3

7

52
.6

3

57
.8

9

63
.1

6

68
.4

2

73
.6

8

78
.9

5

84
.2

1

89
.4

7

94
.7

4

10
0.

00

%
 o

f f
au

lts
 co

ve
re

d

% of test suite covered

APFD for Program 2
No Order
90.35%

Random
Order
86.84%
Reverse
Order
83.33%
Optimum
Order
96.49%
ACO Order
96.49%

Figure 11. APFD for P2.

Mathematics 2023, 11, 2983 17 of 21Mathematics 2023, 11, x FOR PEER REVIEW 18 of 22

Figure 12. APFD for P3.

Figure 13. APFD for P4.

The best APFD results achieved using the improved ACO algorithm, as depicted
above, ensure that not only the maximum faults are covered in the entire test suite, but
also maximum faults are revealed at earlier stages of running the prioritized test suite.
These further motivate us to use the Enhanced ACO_TCSP algorithm.

In order to further ascertain the efficiency of our proposed work, we statistically an-
alyzed the performance of existing ACO and the proposed Enhanced ACO_TCSP ap-
proach. We use the Independent Two Sample t-Test for statistical analysis. The objective
here is to inspect if the proposed technique is more efficient than its earlier version. For
this, we apply a t-test to compare % correctness and % time reduction achieved in the case
of the four benchmark programs.

The Null Hypothesis (H0) for the t-test is taken as:

(H0.) There is no significant improvement in the performance of Enhanced ACO_TCSP
(in terms of % correctness and % time reduction) as compared to its earlier version
(ACO_TCSP) for test data selection and prioritization.

To ascertain our claim, proving our research hypothesis and thereby rejecting the H0,
the outcome of statistical analysis was conducted using Python language. The outcomes
have been tabulated in Table 5 and depicted in Figures 14 and 15 below.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.
00

4.
00

8.
00

12
.0

0
16

.0
0

20
.0

0
24

.0
0

28
.0

0
32

.0
0

36
.0

0
40

.0
0

44
.0

0
48

.0
0

52
.0

0
56

.0
0

60
.0

0
64

.0
0

68
.0

0
72

.0
0

76
.0

0
80

.0
0

84
.0

0
88

.0
0

92
.0

0
96

.0
0

10
0.

00

%
 o

f f
au

lts
 co

ve
re

d

% of test suite covered

APFD for Program 3
No Order
50%

Random
Order
64.22%
Reverse
Order
65.56%
Optimum
Order 90%

ACO Order
90%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.
00

4.
00

8.
00

12
.0

0
16

.0
0

20
.0

0
24

.0
0

28
.0

0
32

.0
0

36
.0

0
40

.0
0

44
.0

0
48

.0
0

52
.0

0
56

.0
0

60
.0

0
64

.0
0

68
.0

0
72

.0
0

76
.0

0
80

.0
0

84
.0

0
88

.0
0

92
.0

0
96

.0
0

10
0.

00

%
 o

f f
au

lts
 co

ve
re

d

% of test suite covered

APFD for Program 4 No Order
84.62%

Random
Order
87.69%
Reverse
Order
9.23%
Optimum
Order
91.54%
ACO Order
91.54%

Figure 12. APFD for P3.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 22

Figure 12. APFD for P3.

Figure 13. APFD for P4.

The best APFD results achieved using the improved ACO algorithm, as depicted
above, ensure that not only the maximum faults are covered in the entire test suite, but
also maximum faults are revealed at earlier stages of running the prioritized test suite.
These further motivate us to use the Enhanced ACO_TCSP algorithm.

In order to further ascertain the efficiency of our proposed work, we statistically an-
alyzed the performance of existing ACO and the proposed Enhanced ACO_TCSP ap-
proach. We use the Independent Two Sample t-Test for statistical analysis. The objective
here is to inspect if the proposed technique is more efficient than its earlier version. For
this, we apply a t-test to compare % correctness and % time reduction achieved in the case
of the four benchmark programs.

The Null Hypothesis (H0) for the t-test is taken as:

(H0.) There is no significant improvement in the performance of Enhanced ACO_TCSP
(in terms of % correctness and % time reduction) as compared to its earlier version
(ACO_TCSP) for test data selection and prioritization.

To ascertain our claim, proving our research hypothesis and thereby rejecting the H0,
the outcome of statistical analysis was conducted using Python language. The outcomes
have been tabulated in Table 5 and depicted in Figures 14 and 15 below.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.
00

4.
00

8.
00

12
.0

0
16

.0
0

20
.0

0
24

.0
0

28
.0

0
32

.0
0

36
.0

0
40

.0
0

44
.0

0
48

.0
0

52
.0

0
56

.0
0

60
.0

0
64

.0
0

68
.0

0
72

.0
0

76
.0

0
80

.0
0

84
.0

0
88

.0
0

92
.0

0
96

.0
0

10
0.

00

%
 o

f f
au

lts
 co

ve
re

d

% of test suite covered

APFD for Program 3
No Order
50%

Random
Order
64.22%
Reverse
Order
65.56%
Optimum
Order 90%

ACO Order
90%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.
00

4.
00

8.
00

12
.0

0
16

.0
0

20
.0

0
24

.0
0

28
.0

0
32

.0
0

36
.0

0
40

.0
0

44
.0

0
48

.0
0

52
.0

0
56

.0
0

60
.0

0
64

.0
0

68
.0

0
72

.0
0

76
.0

0
80

.0
0

84
.0

0
88

.0
0

92
.0

0
96

.0
0

10
0.

00

%
 o

f f
au

lts
 co

ve
re

d

% of test suite covered

APFD for Program 4 No Order
84.62%

Random
Order
87.69%
Reverse
Order
9.23%
Optimum
Order
91.54%
ACO Order
91.54%

Figure 13. APFD for P4.

The Null Hypothesis (H0) for the t-test is taken as:

(H0.) There is no significant improvement in the performance of Enhanced ACO_TCSP (in
terms of % correctness and % time reduction) as compared to its earlier version (ACO_TCSP)
for test data selection and prioritization.

To ascertain our claim, proving our research hypothesis and thereby rejecting the H0,
the outcome of statistical analysis was conducted using Python language. The outcomes
have been tabulated in Table 5 and depicted in Figures 14 and 15 below.

Table 5 can be observed to find that the probability of H0 being true is significantly
less (p-value < 0.5). Thereby we can reject the H0 (Null Hypothesis) and state that our
research hypothesis is true, that is, our proposed technique exhibits significantly improved
performance over its earlier version.

Table 5. p-value obtained after applying an independent two-sample t-test.

p-value obtained for % correctness 0.05896016215814072

p-value obtained for % time reduction 0.11581073519437922

Mathematics 2023, 11, 2983 18 of 21

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 22

Table 5. p-value obtained after applying an independent two-sample t-test.

p-value obtained for % correctness 0.05896016215814072
p-value obtained for % time reduction 0.11581073519437922

Table 5 can be observed to find that the probability of H0 being true is significantly
less (p-value < 0.5). Thereby we can reject the H0 (Null Hypothesis) and state that our
research hypothesis is true, that is, our proposed technique exhibits significantly im-
proved performance over its earlier version.

The results of the t-test can be graphically analyzed using the following box plots:

Figure 14. Comparison of % Correctness achieved.

Figure 15. Comparison of % time reduction achieved.

Encouragingly, Figures 13 and 14 help us to unambiguously show the significant im-
provement achieved in the case of Enhanced ACO_TCSP in terms of % correctness and %
time reduction for test case selection and prioritization. This provides a concrete valida-
tion to the proposed enhancements and motivates us to further use the enhanced ap-
proach in the field.

8. Discussion
In this paper, an enhancement of ACO for improving the test case selection and pri-

oritization technique proposed by Singh et al. [7] has been developed and validated on
four benchmark programs. Moreover, a comparison with five traditional prioritization
techniques has been accomplished using APFD. The results achieved are encouraging ow-
ing to the following reasons:
(1) The proposed technique results in the minimization of the test suite as the EF in-

creases,
(2) The running time is substantially reduced, and with the rise in EF, it is further re-

duced,
(3) The precision of results achieved is encouraging for most of the test programs,

Figure 14. Comparison of % Correctness achieved.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 22

Table 5. p-value obtained after applying an independent two-sample t-test.

p-value obtained for % correctness 0.05896016215814072
p-value obtained for % time reduction 0.11581073519437922

Table 5 can be observed to find that the probability of H0 being true is significantly
less (p-value < 0.5). Thereby we can reject the H0 (Null Hypothesis) and state that our
research hypothesis is true, that is, our proposed technique exhibits significantly im-
proved performance over its earlier version.

The results of the t-test can be graphically analyzed using the following box plots:

Figure 14. Comparison of % Correctness achieved.

Figure 15. Comparison of % time reduction achieved.

Encouragingly, Figures 13 and 14 help us to unambiguously show the significant im-
provement achieved in the case of Enhanced ACO_TCSP in terms of % correctness and %
time reduction for test case selection and prioritization. This provides a concrete valida-
tion to the proposed enhancements and motivates us to further use the enhanced ap-
proach in the field.

8. Discussion
In this paper, an enhancement of ACO for improving the test case selection and pri-

oritization technique proposed by Singh et al. [7] has been developed and validated on
four benchmark programs. Moreover, a comparison with five traditional prioritization
techniques has been accomplished using APFD. The results achieved are encouraging ow-
ing to the following reasons:
(1) The proposed technique results in the minimization of the test suite as the EF in-

creases,
(2) The running time is substantially reduced, and with the rise in EF, it is further re-

duced,
(3) The precision of results achieved is encouraging for most of the test programs,

Figure 15. Comparison of % time reduction achieved.

The results of the t-test can be graphically analyzed using the following box plots:
Encouragingly, Figures 13 and 14 help us to unambiguously show the significant

improvement achieved in the case of Enhanced ACO_TCSP in terms of % correctness and %
time reduction for test case selection and prioritization. This provides a concrete validation
to the proposed enhancements and motivates us to further use the enhanced approach in
the field.

8. Discussion

In this paper, an enhancement of ACO for improving the test case selection and
prioritization technique proposed by Singh et al. [7] has been developed and validated
on four benchmark programs. Moreover, a comparison with five traditional prioritization
techniques has been accomplished using APFD. The results achieved are encouraging
owing to the following reasons:

(1) The proposed technique results in the minimization of the test suite as the EF increases,
(2) The running time is substantially reduced, and with the rise in EF, it is further reduced,
(3) The precision of results achieved is encouraging for most of the test programs,
(4) The percentage improvement in correctness is very high compared to the

previous technique,
(5) A comparison of the Enhanced ACO_TCSP prioritized test suite with No Order, Re-

verse Order, Random Order and Optimal Order prioritized test suites using APFD
has been carried out. The results yielded APFD values for ACO that are equivalent
to the optimum values (values that have maximum possible fault exposure in mini-
mum possible time). The effect of the enhancement factor for different values of EF
depicted motivating observations validates the Enhanced ACO_TCSP against the old
approach [31]. The time reduction for the chosen resultant test suite by ACO was
found to be almost the same for varying values of EF. This is due to the balancing
provided by the increase in the number of ants for the new algorithm. The resultant
test suite thus obtained potentially provides fast fault coverage.

Mathematics 2023, 11, 2983 19 of 21

The investigation of the usage of enhancement factor for different values of EF steers
one to the following substantial leads:

1. A higher number of possible best paths are found at increased EF.
2. The selected best path is about the same for low and high values of EF.
3. The iteration number for convergence of Enhanced ACO_TCSP reduces with the

increase in EF, this validates more exploration at the initial stages of the algorithm also.
4. Enhanced ACO_TCSP tends to yield optimum results at higher values of EF.

In addition to the above, statistical validation of the Enhanced ACO_TCSP has also
been conducted. An Independent Two Sample t-Test has been performed to examine
the correctness and execution time improvement achieved. Box Plots have also been
used to represent the same. To affirm the validation of Enhanced ACO_TCSP, the t-test
produced excellent results. All the aforementioned observations indicate that the proposed
Enhanced ACO_TCSP technique yields promising solutions and exhibits better results
than the existing technique in terms of solution correctness. The paper contributes to
the literature by presenting the Enhanced ACO_TCSP approach and providing detailed
enhancements and their validation on four benchmark programs without compromising
the complexity of the algorithm. This can be easily re-implemented and fruitfully used by
researchers for selecting and prioritizing test cases in the future.

9. Conclusions and Future Scope

The enhanced ACO_TCSP proposed in this work enhances the search space and
makes the exploitation elite. The experimental results of the proposed approach on four
benchmark programs were found to validate the enhancements. The average accuracy of
the Enhanced ACO_TCSP was found to improve by over 30% over the original ACO_TCSP
approach. Furthermore, the optimal paths converged at earlier iterations. All this could be
achieved without an increase in execution time. This was ensured by the stopping criteria
of TC (time-constraint) entered by the user. In addition to this, APFD analysis also proved
the earlier exposure of faults achieved in comparison with the traditional prioritization
approaches. Hence, as in the real world, increasing the size of the ant colony ensures
more exploration, and elitism ensures intelligent exploitation of the already discovered
paths. As in real ants, these ensure finding the optimal path with earlier convergence.
Henceforth, this paper presents and validates the Enhanced ACO_TCSP approach for
solving regression test selection and prioritization. As a part of future work, we can
implement newer techniques [40] and empirically evaluate them for test case selection
and prioritization. The proposed enhancements in ACO_TCSP proposed in this work can
be applied and tested on many more metaheuristics that have been applied in the area
of test case selection and prioritization for better efficiency in terms of results, without
increasing the time complexity of these techniques. The limitations of the proposed work
are as follows. The results have been experimentally evaluated on small codes. They can
be experimentally evaluated in future work. The limitations associated with ACO as a
methodology are also applicable to our proposed technique; however, the most prominent
limitation of ACO getting stuck in local minimum has been averted using our technique
due to the proposed enhancements. We have tried to imitate the behavior of real ants in
our work; however, the intuitive behavior of the real ants cannot be incorporated even in
the Enhanced ACO_TCSP technique.

Author Contributions: Conceptualization, S.S. and N.J.; methodology, S.S. and N.J.; software, S.S.,
N.J., K.S., G.D. and S.M.; validation, R.G. and B.S.; formal analysis, M.N., S.N.M. and N.R.P.; inves-
tigation, S.S. and N.J.; resources, S.S. and N.J.; data curation, S.S. and N.J.; writing—original draft
preparation, S.S. and N.J.; writing—review and editing, S.S., N.J., K.S., G.D. and S.M.; visualization,
S.S. and N.J; supervision, B.S.; project administration, R.G. and B.S.; funding acquisition, M.N., S.N.M.
and N.R.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Mathematics 2023, 11, 2983 20 of 21

Data Availability Statement: No data was needed in the work related to this research. The online
sources from which the programs under test were downloaded re mentioned in the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bajaj, A.; Abraham, A.; Ratnoo, S.; Gabralla, L.A. Test Case Prioritization, Selection, and Reduction Using Improved Quantum-

Behaved Particle Swarm Optimization. Sensors 2022, 22, 4374. [CrossRef] [PubMed]
2. Ansari, A.; Khan, A.; Khan, A.; Mukadam, K. Optimized regression test using test case prioritization. Procedia Comput. Sci. 2016,

79, 152–160. [CrossRef]
3. Kumar, S.; Ranjan, P. ACO based test case prioritization for fault detection in maintenance phase. Intern. J. Appl. Eng. Res. 2017,

12, 5578–5586.
4. Mohapatra, S.K.; Prasad, S. Finding Representative Test Case for Test Case Reduction in Regression Testing. Int. J. Intell. Syst.

Appl. 2015, 7, 60. [CrossRef]
5. Noemmer, R.; Haas, R. An evaluation of test suite minimization techniques. In Software Quality: Quality Intelligence in Software and

Systems Engineering; Springer: Vienna, Austria, 2019.
6. Sharma, B.; Hashmi, A.; Gupta, C.; Jain, A. Collaborative Recommender System based on Improved Firefly Algorithm. Comput. Y

Sist. 2022, 26, 2. [CrossRef]
7. Singh, Y.; Kaur, A.; Suri, B. Test case prioritization using ant colony optimization. ACM SIGSOFT Softw. Eng. Notes 2010, 35, 1–7.

[CrossRef]
8. Suri, B.; Singhal, S. Implementing Ant Colony Optimization for Test Case Selection and Prioritization. Int. J. Comput. Sci. Eng.

2011, 3, 1924–1932.
9. Wu, L.; Huang, X.; Cui, J.; Liu, C.; Xiao, W. Modified adaptive ant colony optimization algorithm and its application for solving

path planning of mobile robot. Expert Syst. App. 2023, 215, 119410. [CrossRef]
10. Bajaj, A.; Sangwan, O.P. A systematic literature review of test case prioritization using genetic algorithms. IEEE Access 2019,

7, 126355–126375. [CrossRef]
11. Li, F.; Zhou, J.; Li, Y.; Hao, D.; Zhang, L. Aga: An accelerated greedy additional algorithm for test case prioritization. IEEE Trans.

Softw. Eng. 2021, 48, 5102–5119. [CrossRef]
12. Jatana, N.; Suri, B. Particle swarm and genetic algorithm applied to mutation testing for test data generation: A comparative

evaluation. J. King Saud Univ.-Comput. Inf. Sci. 2020, 32, 514–521. [CrossRef]
13. Chaudhary, N.; Sangwan, O. Multi Objective Test Suite Reduction for GUI Based Software Using NSGA-II. Int. J. Inf. Technol.

Comput. Sci. 2016, 8, 59–65. [CrossRef]
14. Öztürk, M.M. A bat-inspired algorithm for prioritizing test cases. Vietnam. J. Comput. Sci. 2018, 5, 45–57. [CrossRef]
15. Dhareula, P.; Ganpati, A. Flower Pollination Algorithm for Test Case Prioritization in Regression Testing. In ICT Analysis and

Applications: Proceedings of ICT4SD 2019; Springer: Singapore, 2020; Volume 93, pp. 155–167. [CrossRef]
16. Srivastava, P.; Reddy, D.P.K.; Reddy, M.S.; Ramaraju, C.V.; Nath, I.C.M. Test Case Prioritization Using Cuckoo Search. In Advanced

Automated Software Testing: Frameworks for Refined Practice; IGI Global: Hershey, PA, USA, 2020; pp. 113–128.
17. Kaushik, A.; Verma, S.; Singh, H.J.; Chhabra, G. Software cost optimization integrating fuzzy system and COA-Cuckoo

optimization algorithm. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 1461–1471. [CrossRef]
18. Mann, M.; Sangwan, O.P. Test case prioritization using Cuscuta search. Netw. Biol. 2014, 4, 179–192.
19. Jatana, N.; Suri, B. An Improved Crow Search Algorithm for Test Data Generation Using Search-Based Mutation Testing. Neural

Process. Lett. 2020, 52, 767–784. [CrossRef]
20. Panwar, D.; Tomar, P.; Singh, V. Hybridization of Cuckoo-ACO algorithm for test case prioritization. J. Stat. Manag. Syst. 2018,

21, 539–546. [CrossRef]
21. Yoo, S.; Harman, M. Using hybrid algorithm for Pareto efficient multi-objective test suite minimisation. J. Syst. Softw. 2010,

83, 689–701. [CrossRef]
22. Xu, Z.; Gao, K.; Khoshgoftaar, T.M.; Seliya, N. System regression test planning with a fuzzy expert system. Inf. Sci. 2014,

259, 532–543. [CrossRef]
23. Zhou, Z.Q.; Sinaga, A.; Susilo, W.; Zhao, L.; Cai, K.-Y. A cost-effective software testing strategy employing online feedback

information. Inf. Sci. 2018, 422, 318–335. [CrossRef]
24. Dorigo, M.; Maniezzo, V.; Colorni, A. The Ant System: An Autocatalytic Optimizing Process. In Technical Report TR91-016;

Politecnico di Milano: Milano, Italy, 1991.
25. Chaudhary, R.; Agrawal, A.P. Regression Test Case Selection for Multi-Objective Optimization Using Metaheu-ristics. Int. J. Inf.

Technol. Comput. Sci. 2015, 7, 50–56.
26. Bian, Y.; Li, Z.; Zhao, R.; Gong, D. Epistasis based aco for regression test case prioritization. IEEE Trans. Emerg. Top. Comput. Intell.

2017, 1, 213–223. [CrossRef]

https://doi.org/10.3390/s22124374
https://www.ncbi.nlm.nih.gov/pubmed/35746156
https://doi.org/10.1016/j.procs.2016.03.020
https://doi.org/10.5815/ijisa.2015.11.08
https://doi.org/10.13053/cys-26-2-4232
https://doi.org/10.1145/1811226.1811238
https://doi.org/10.1016/j.eswa.2022.119410
https://doi.org/10.1109/ACCESS.2019.2938260
https://doi.org/10.1109/TSE.2021.3137929
https://doi.org/10.1016/j.jksuci.2019.05.004
https://doi.org/10.5815/ijitcs.2016.08.07
https://doi.org/10.1007/s40595-017-0100-x
https://doi.org/10.1007/978-981-15-0630-7_16
https://doi.org/10.1007/s13198-017-0615-7
https://doi.org/10.1007/s11063-020-10288-7
https://doi.org/10.1080/09720510.2018.1466962
https://doi.org/10.1016/j.jss.2009.11.706
https://doi.org/10.1016/j.ins.2010.09.012
https://doi.org/10.1016/j.ins.2017.08.088
https://doi.org/10.1109/TETCI.2017.2699228

Mathematics 2023, 11, 2983 21 of 21

27. Vescan, A.; Pintea, C.M.; Pop, P.C. Solving the test case prioritization problem with secure features using ant colony system.
In Proceedings of the International Joint Conference: 12th International Conference on Computational Intelligence in Security
for Information Systems (CISIS 2019) and 10th International Conference on European Transnational Education (ICEUTE 2019),
Seville, Spain, 13–15 May 2019; Springer: Cham, Switzerland, 2019.

28. Suri, B.; Singhal, S. Understanding the effect of time-constraint bounded novel technique for regression test selection and
prioritization. Int. J. Syst. Assur. Eng. Manag. 2015, 6, 71–77. [CrossRef]

29. Noguchi, T.; Washizaki, H.; Fukazawa, Y.; Sato, A.; Ota, K. History-Based Test Case Prioritization for Black Box Testing Using Ant
Colony Optimization. In Proceedings of the IEEE 8th International Conference on Software Testing, Verification and Validation
(ICST), Graz, Austria, 13–17 April 2015. [CrossRef]

30. Ahmad, S.F.; Singh, D.K.; Suman, P. Prioritization for Regression Testing Using Ant Colony Optimization Based on Test Factors.
In Intelligent Communication, Control and Devices; Springer: Berlin, Germany, 2018; pp. 1353–1360. [CrossRef]

31. Singhal, S.; Jatana, N.; Suri, B.; Misra, S.; Fernandez-Sanz, L. Systematic literature review on test case selection and prioritization:
A tertiary study. Appl. Sci. 2021, 11, 12121. [CrossRef]

32. Suri, B.; Singhal, S. Evolved regression test suite selection using BCO and GA and empirical comparison with ACO. CSI Trans.
ICT 2016, 3, 143–154. [CrossRef]

33. Suri, B.; Singhal, S. Literature survey of Ant Colony Optimization in software testing. In Proceedings of the CONSEG, CSI Sixth
International Conference On Software Engineering, Indore, India, 5–7 September 2012. [CrossRef]

34. Kavitha, R.; Jothi, D.K.; Saravanan, K.; Swain, M.P.; Gonzáles, J.L.A.; Bhardwaj, R.J.; Adomako, E. Ant colony optimization-
enabled CNN deep learning technique for accurate detection of cervical cancer. BioMed Res. Int. 2023, 2023, 1742891. [CrossRef]

35. Singhal, S.; Suri, B. Multi objective test case selection and prioritization using African buffalo optimization. J. Inf. Optim. Sci. 2020,
41, 1705–1713. [CrossRef]

36. Singhal, S.; Jatana, N.; Dhand, G.; Malik, S.; Sheoran, K. Empirical Evaluation of Tetrad Optimization Methods for Test Case
Selection and Prioritization. Indian J. Sci. Technol. 2023, 16, 1038–1044. [CrossRef]

37. Suri, B.; Singhal, S. Analyzing test case selection & prioritization using ACO. ACM SIGSOFT Softw. Eng. Notes 2011, 36, 1–5.
38. Dorigo, M.; Di Caro, G.; Gambardella, L.M. Ant Algorithms for Discrete Optimization. Artif. Life 1999, 5, 137–172. [CrossRef]
39. Chen, X.; Gu, Q.; Zhang, X.; Chen, D. Building Prioritized Pairwise Interaction Test Suites with Ant Colony Optimization. In

Proceedings of the 2009 Ninth International Conference on Quality Software, Jeju, Korea, 24–25 August 2009; pp. 347–352.
[CrossRef]

40. Zhu, A.; Xu, C.; Li, Z.; Wu, J.; Liu, Z. Hybridizing grey wolf optimization with differential evolution for global optimization and
test scheduling for 3D stacked SoC. J. Syst. Eng. Electron. 2015, 26, 317–328. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s13198-014-0244-3
https://doi.org/10.1109/icst.2015.7102622
https://doi.org/10.1007/978-981-10-5903-2_142
https://doi.org/10.3390/app112412121
https://doi.org/10.1007/s40012-016-0080-5
https://doi.org/10.1109/conseg.2012.6349501
https://doi.org/10.1155/2023/1742891
https://doi.org/10.1080/02522667.2020.1799514
https://doi.org/10.17485/IJST/v16i14.2109
https://doi.org/10.1162/106454699568728
https://doi.org/10.1109/qsic.2009.52
https://doi.org/10.1109/JSEE.2015.00037

	Introduction
	Related Work
	Ant Colony Optimization
	Concept
	Limitations of ACO

	Proposed Enhancements
	Expand the Searched Space
	Elitism
	Modifying Total Time Calculation

	Implementing the Enhancements
	Problem Representation and Execution Steps
	Modified Algorithm and its Complexity

	Experimental Design
	Benchmark Programs
	Design
	ACO Parameter Settings for Enhanced ACO_TCSP

	Result Analysis
	Execution Time of Paths Discovered
	Correctness of the Technique
	APFD and Statistical Analysis

	Discussion
	Conclusions and Future Scope
	References

