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Abstract: Regression testing of the software during its maintenance phase, requires test case pri-
oritization and selection due to the dearth of the allotted time. The resources and the time in this
phase are very limited, thus testers tend to use regression testing methods such as test case prioriti-
zation and selection. The current study evaluates the effectiveness of testing with two major goals:
(1) Least running time and (2) Maximum fault coverage possible. Ant Colony Optimization (ACO) is
a well-known soft computing technique that draws its inspiration from nature and has been widely
researched, implemented, analyzed, and validated for regression test prioritization and selection.
Many versions of ACO approaches have been prolifically applied to find solutions to many non-
polynomial time-solvable problems. Hence, an attempt has been made to enhance the performance
of the existing ACO_TCSP algorithm without affecting its time complexity. There have been efforts to
enhance the exploration space of various paths in each iteration and with elite exploitation, reducing
the total number of iterations required to converge to an optimal path. Counterbalancing enhanced
exploration with intelligent exploitation implies that the run time is not adversely affected, the same
has also been empirically validated. The enhanced algorithm has been compared with the existing
ACO algorithm and with the traditional approaches. The approach has also been validated on four
benchmark programs to empirically evaluate the proposed Enhanced ACO_TCSP algorithm. The
experiment revealed the increased cost-effectiveness and correctness of the algorithm. The same has
also been validated using the statistical test (independent t-test). The results obtained by evaluating
the proposed approach against other reference techniques using Average Percentage of Faults De-
tected (APFD) metrics indicate a near-optimal solution. The multiple objectives of the highest fault
coverage and least running time were fruitfully attained using the Enhanced ACO_TCSP approach
without compromising the complexity of the algorithm.

Keywords: ant colony optimization; regression testing; test suite prioritization; metaheuristic
technique; nature-inspired technique

MSC: 68-04

1. Introduction

Software has unprecedentedly altered the lifestyles of people in current and forthcom-
ing times. In order to prevent software from getting superseded, lots of effort is required
for its maintenance, thus incurring a hefty amount of money. Errors in software can be
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functional or non-functional. Functional errors are related to the operations and actions of
software, whereas non-functional errors are related to customer expectations and perfor-
mance requirements. Function testing includes unit testing, system testing, and acceptance
testing, whereas non-function testing deals with evaluating the parameters such as security,
reliability, usability, and scalability. Software testing needed to ensure the proper function-
ing of the software after updates are referred to as Regression Testing [1]. Researchers have
been rigorously working toward the development and validation of various regression
testing techniques. Regression Test Prioritization and Regression Test Selection are the
key regression testing techniques focused on in this paper. Regression test selection and
prioritization activities, when carried out in an endeavor to obtain promising results in the
minimum possible time, are an NP—complete combinatorial optimization problem [2]. The
taxonomy of Regression Test Selection and Prioritization techniques is shown in Figure 1.
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Test Case Prioritization (TCP) [2] helps in ordering test cases based on certain criteria
such as maximization of fault coverage in order to reduce the testing cost and speed
up the delivery of the modified product. Regression test prioritization techniques try to
reorder a regression test suite based on decreasing priority. The priority of test cases is
established using some predefined testing criterion. The test cases having higher priority
are preferred over lower priority ones in the process of regression testing [3]. Prioritization
can be achieved on the basis of one or more objectives such as faults, code coverage, cost
of execution, etc. Code coverage is a metric that measures the degree of coverage of the
program code by a particular test suite [3]. The improved performance of the prioritized
test suite in terms of reduced run time is a forever goal in this ever-time-constrained world.
Furthermore, intelligent prioritization would mean that more and more faults are exposed
as early as possible. Thus, the multi-objective goal is to deliver a regression test suite with
the capacity to reveal maximum faults in the least possible time. The prioritization problem
can thereby be stated as follows:

“Given: A test suite, T, the set of permutations of T, PT, and a function from PT to real
numbers, f: PT->R. To find T’ € PT such that (¥T”)(T” € PT)(T ‘’ !=T’)[ f (T’) ≥ f (T”)].”
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Test suite minimization or reduction seeks to minimize the number of test cases in
it by removing the redundant ones. These concepts of reduction and minimization are
interchangeable as all the reduction techniques may be utilized in producing a provisional
subset of the test suite, whereas minimization techniques permanently remove the test
cases. More formally, the test suite minimization problem is stated as follows [4]:

“To find a representative set of test cases from the original test suite that satisfies all
the requirements considered ‘adequate’ for testing the program”.

Test Case Selection (TCS), resembles test suite minimization; as both of them intend
to select few and effective test cases from the original test suite. The significant difference
is whether the selection criteria focus on modifications in the SUT or not. Test suite
minimization is generally built on the basis of metrics such as coverage measured from a
sole version of the PUT [5]. On the other hand, in TCS, test cases are picked up based on
the relevance of their execution to the variations between the original and the modified
versions of the SUT. While TCS techniques also aim to reduce the number of test cases,
the majority of these techniques focus on modified parts of the software under test. This
means that the emphasis is to identify the modified sections of the software under test. This
requires statistical analysis of the functional view of the software under test.

ACO_TCSP algorithm maps the real-world ants to digital ants while solving the
regression test selection and prioritization problem. This approach has been proposed and
validated and found to be very promising in earlier studies. Although, the major drawback,
as found in other ACO applications, was ACO_TCSP falling into the local optima due to
over-exploitation and less exploration of the solution space. The current study tries to solve
this problem by enhancing the search space (increasing the number of ants) and making the
exploitation more elite or intelligent. This work undertakes the following multi-objectives
to be achieved:

(1) Highest fault coverage achieved i.e., maximum faults should be caught by the test
suite, and

(2) The least possible test case execution time.

Hence, Enhanced ACO_TCSP has been proposed to achieve these two objectives, and
the technique has been validated on four benchmark programs.

ACO is an established and well-tested optimization approach. There are a huge
number of more recent optimization algorithms such as butterfly optimization algorithm
(BOA), water optimization algorithms (WOA), Trees social relations optimization algorithm
(TSR), red deer optimization algorithm (RDO), and many more. These have not been
chosen for the current research as it tries to improve an already existing, well-established
test case selection and prioritization algorithm that has already provided highly motivating
results on prioritization.

The remaining paper is structured as follows: Section 2 presents the related work.
Section 3 details the concepts of ACO and the limitations of the existing technique. Section 4
elucidates the proposed enhancements. Section 5 presents the implementation details of the
enhanced technique by giving the algorithmic steps. Section 6 presents the experimental
design. Section 7 presents the analysis of the results obtained. Sections 8 and 9 present the
discussion and conclusion respectively.

2. Related Work

The way nature and its living beings co-exist in harmony is astonishing. The last
two decades have witnessed extensive research in the area of developing and applying
nature-inspired techniques for solving various combinatorial optimization problems [6].
Nature-inspired techniques such as ACO (Ant Colony Optimization) [7–9], GA (Genetic Al-
gorithms), BCO (Bee Colony Optimization) [10,11], PSO (Particle Swarm Optimization) [12],
NSGA -II (Nondominated Sorting Genetic Algorithm II) [13], Bat-inspired algorithm [14],
flower pollination algorithm [15], cuckoo search algorithm [16,17], Cuscuta search [18],
CSA [19], and hybrid approaches [20,21] (combining two or more different approaches)
have already been applied to solve the regression test selection and prioritization problem.



Mathematics 2023, 11, 2983 4 of 21

There are other well-known regression testing techniques that deploy techniques such as
fuzzy expert systems [22] and online feedback information [23].

All the ants have eaten your sweets? Powerful nature inspires us to build some
artificial ants and achieve optimization goals. Inspired by the intelligent behavior of ants
in food foraging, Dorigo gave a new soft computing approach and named it Ant Colony
Optimization (ACO) [24]. This metaheuristic has already been applied to solve several
non-polynomial time-solvable problems [25]. As given by Singh et al. [7], ACO can be
applied to time-constrained test suite selection and prioritization. ACO variants have been
applied rigorously by various researchers working in the area. Some of them include:
epistasis based ACO [26], using ACO for prioritizing test cases with secure features [27]
time-constraint-based ACO [28], history-based prioritization using ACO [29], prioritizing
test cases based on test factors using ACO [30]. The widespread usage of ACO for test
case selection and prioritization highlights the fact that ACO is a very prolific technique
in the area. The improvements suggested in ACO [7,31,32] further ascertain that there
are limitations associated with the technique. A survey of ACO in software testing [33]
showed various limitations of ACO as identified by various researchers. This provided
the key motivation for the authors for the present work. Thus, an improved version
of the ACO technique for Test Case Selection and Prioritization has been proposed and
implemented. The enhancement proposed has been validated in terms of: (1) no complexity
overhead as compared to the previous approach, (2) improvement in correctness over the
previous approach tested on four benchmark programs, and (3) APFD analysis against
the traditional regression testing approaches [8]. The three enhancements proposed in
the current manuscript have not been proposed for modification together in any of the
above-mentioned related texts. Henceforth, the presented approach provides a new ACO
approach having combined enhancements.

3. Ant Colony Optimization

This section gives a conceptual view of ACO and explains the limitations of the existing
technique, thereby leading to the proposed enhancements in the subsequent section.

3.1. Concept

ACO is a popular metaheuristic method that provides a solution to many combina-
torial optimization problems [34–36]. It is inspired by the concept of stigmergy, which is
an indirect means of communicating with fellow members using the surrounding envi-
ronment. This complex yet effective mode of communication is utilized by ants for food
search. This working of ACO is shown in Figure 2. There are three possible paths (Path 1,
Path 2, Path 3) from the ant nest to the food source. Ants cannot see, yet they magnificently
coordinate within their colony for food search, with the use of a chemical substance known
as pheromone. While foraging for food and fetching it back to their nests, ants keep laying
the pheromone trail on the traversed path. The other ants thereby smell the maximum
amount of pheromone and start following that path. The interesting fact to notice here is,
that the ant on the minimum length path returns fastest, thus laying an additional amount
of pheromone on their forward and return journeys. This enhances the probability of
fellow ants taking this path. The ants taking this corresponding path will further drop
more pheromones on that path. Therefore, attracting more fellow ants to take up this path.
This process continues, and eventually, the whole colony of ants would converge to the
minimum length path (here Path 1 in Figure 2).

The optimization algorithm based on the artificial behavior of ants works iteratively
by the generation of an initial population. It then repeatedly endeavors to construct
candidate solutions by exploration and exploitation of the search space. The exploration is
guided by heuristic information and the experience gathered by the ants in the preceding
iterations (well-known as ‘pheromone trails’) via a shared pool of memory. Using the
concepts of using ACO, effective solutions have been achieved to many hard combinatorial
problems [8]. The heuristic function (that marks the quality of the candidate solution
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during the construction phase), and the pheromone values (signifying the information
collected over different iterations) are the two major components of the working of ACO as
a solution to combinatorial problems.
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3.2. Limitations of ACO

ACO has been magnificently used to yield effective solutions to various optimization
problems, yet its convergence has not been proven. This is also justified by the ACO
approaches being approximation approaches. The general limitations include: slow con-
vergence speed [33] and the problem of subsiding in the local optimal solution [33]. The
reason behind it may be that the ACO updates the pheromone on the basis of the present
promising path, and subsequently, after certain iterations, the amount of pheromone on
this path rises substantially, while the pheromone for the probable worth path is frail. All
the ants are inclined to this promising path and it becomes extremely tough to skip this
path. Hence, the chances of marking the optimal solution being the locally optimal one,
are increased.

Practically it is not viable to re-run the whole original test suite for building confi-
dence in the modified software during regression testing. Thus, it becomes crucial to use
selection and prioritization for the tests. Current research undertakes the highest fault
coverage achieved in the least possible test case execution time as the objectives. ACO for
test selection and prioritization was proposed in [7], implemented as ACO_TCSP in [8],
and analyzed in [31,37]. From the analysis conducted in [31,37], some limitations in the
ACO_TCSP technique were discovered:

(1) Lower Termination condition (TC) values lead the ACO_TSCP to fall into the local
optima problem by restricting exploration of newer paths.

(2) Around 5% of the time, the ACO_TCSP could explore the optimum path, but due
to the lack of pheromone that could be deposited, it is not the best path, i.e., the
algorithm ended by meeting set TC criteria.

(3) Lower TC value directly implies a lower number of iterations. Hence, changes are
made in the algorithm to reach the set TC value as delayed as possible.

4. Proposed Enhancements

The major problem was falling into local optima due to a lack of explored search space
and over-exploitation at an early stage. To solve this problem, it has been tried to expand
the explored search space in each iteration while maintaining elite or intelligent exploitation
to confirm as early convergence as possible to the optimal solution. Balancing increased
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exploration with the intelligence introduced into the manner of exploitation should ensure
that the run times are not adversely affected, while the solutions found are improved to
avoid local optima problems. The proposed enhancements have been elaborated as follows:

4.1. Expand the Searched Space

In order to enhance the search space, we propose an increment in the number of
exploring ants, which was earlier equal to the number of test cases in previous implementa-
tions. The enhanced algorithm asks the user to enter the enhancement factor from which
the number of digital ants to be sent exploring paths per test case would be computed.
Consequently, the overall number of ants grows multiple times the input entered by the
user. If ‘EF’ is the Enhancement Factor input by the user, and ‘|TS|’ represents the size of
the original test suite, the total amount of ants (after enhancement) per program run can be
considered to be:

No. of Digital Ants = (EF∗|TS|) (1)

The algorithm should now be able to overcome the problematic premature conver-
gence of ants to a local optimal result. As now the ants will travel through additional paths
in the initial iterations also, the number of paths to select the most promising one from for
the current iteration correspondingly is multiplied by EF. Given as:

Number of paths discovered in 1 iteration = EF∗|TS| (2)

Enhancing the number of digital ants could directly affect the run time of our algorithm,
but since the increase is by a constant enhancement factor (EF), it does not increase the
complexity. Moreover, expanding the search space should lead to earlier convergence
toward finding the optimal path. The same was also confirmed by the experimental results
achieved (as shown in the next sections). So, the small constant time increase caused due to
EF is counterbalanced by convergence at earlier iterations of the algorithm.

4.2. Elitism

In total, 5% of the earlier sample runs could find the optimum path if the overall best
path computation neglects the maximum pheromone over the optimum best path found in
any iteration. The calculation of the Global Best Path (GBP) was updated as:

GBP = min{max pheromone path, Best_Path in any iteration} (3)

This modification alone led to improved accuracy of ACO_TCSP by 4.1%. The elitist
strategy for choosing the GBP over following the normal ACO approach is thus formulated.
This step introduces eliteness in the process of exploiting already explored paths. This
intelligent exploitation would lead to early convergence to the optimal solution. while at
the same time, an increase in exploration would ensure the algorithm from falling into the
local optima problems.

4.3. Modifying Total Time Calculation

The earlier algorithm took the MAX execution time (MET) of the local paths discovered
in an iteration. The stopping criteria (TC) were compared with the MET added in every
iteration. The modification to resolve this issue is recalculating MET using the execution
time corresponding to the Local Best Path (LBP) discovered in every iteration.

MET = MET + ExecTime of LBP (4)

The modification leads to an increased number of iterations for which the ACO_TCSP
would run before reaching the set TC value. It leads to increased exploration and increased
intelligent exploitation of paths and hence more chances of discovering the optimal path. It
is of utmost importance to make sure that modifying MET or enhancing the search space
does not adversely affect the execution time of the improved algorithm. Hence, the same
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was taken care of by ensuring that the algorithm is time bounded by the user-entered
TC value and cannot run after MET has reached TC. Hence, the Enhanced ACO_TCSP
algorithm ensures better results without an increase in the run time of the process.

5. Implementing the Enhancements

Given ‘TS’ (Test Suite) with |TS| test cases in it, the selection and prioritization
problem is specified as follows:

Find the subset ‘S’ of test suite ‘TS’, so as to have ‘m’ test cases (m < |TS|, S TS). The
subset ‘S’ is selected with the aim of maximum fault coverage and prioritized on the basis
of the minimum execution time taken to run the entire subset.

5.1. Problem Representation and Execution Steps

A mapping for the selection/prioritization problem as an undirected graph G (N, E)
having N and E as the set of nodes and edges correspondingly was performed. Test cases
were mapped as the nodes of the graph. Here, ‘wi’ represents the cost of ‘ith ‘edge in the
graph. This cost of edges maps to the trail of pheromone deposited on the edges ei ε E.
Pheromone deposition was correspondingly mapped to the multiple objectives of (1) fault
coverage ‘fi’ on the current path achieved within (2) time constraint, ’Zi’. Originally, the
pheromone or cost on all the edges is nil.

• MAX represents the overall Time Constraint.
• Z stands for an intermediary variable used for TC calculations.
• {a1 × EF, a2 × EF, . . . , an × EF} represents a set of artificial ants, where ‘EF’ is the

enhancement factor.
• S1 to S (n × EF) be the sets in which (n × EF) ants maintain the record of the covered

test cases.

The execution steps of Enhanced ACO_TCSP are detailed below:
Step 1: Initialization—Generating N × EF ants to be sent for exploring the solution

space. All other parameters are initialized accordingly.
Step 2: Exploration—Once generated, the ants begin searching in all random directions

initially. As they move from one test case to another, their paths and killed faults are
constantly updated on the way.

Step 3: Pheromone deposition—Once a probable solution has been found by each
ant in the current iteration, pheromones are deposited on the most effective path (causing
minimum time to run the test cases).

Step 4: Iterating—Steps 1 to 2 are repeated over and over till the stopping TC is
achieved. Now there are many iterations and the most effective path from every iteration
has been found.

Step 5: Finding GBP—Out of all the paths discovered during all the repetitions, GBP is
the one with the least running time. This represents the selected and prioritized set of test
cases as the final answer.

These steps are depicted in Figure 3.
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5.2. Modified Algorithm and its Complexity

Aiming to ascertain that the cost of applying the technique is no more than performing
the complete regression testing, complexity has to be calculated. The complexities of all the
sequential stages are added to compute the total complexity of the new proposed Enhanced
ACO_TCSP (Algorithm 1) (Enhancements from [7,8]).

Algorithm 1: Enhanced ACO_TCSP

Stage-1
1.Initialization Statement-wise complexity

Set Wi = 0 . . . . . . . . . . . . . . . . . . . . . 1
Set TC = MAX (User Defined)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Set EF = Enhancement Factor (User defined) . . . . . . . . . . . . . . . . . . . . . . . . 1
Set Zx = 0 for all x = 1 to (N × EF) . . . . . . . . . . . . N × EF
Create N× EF artificial ants {a1, a2, . . . . . . . a(N*EF)} . . . . . . . . . . . . . . . N× EF

... S1, S2, . . . . . . S(N × EF) = NULL . . . . . . . . . N × EF
Stage-2
2. Do // LOOP 3—outermost

For x = 1 to (N × EF) // LOOP 2 . . . . . . . . . . . . . . . Runs N × EF times
Sx = Sx + { txEF } // Initial test case for ant ax is . . . . . . . . . . . . . . . . . . 1
TmpT = txEF // the starting vertex for ant ax on the graph . . . . . . . . . . . . . . . . . . 1

Do // Loop 1—Innermost loop
tt = Call_select_test_case (ax, tmpT) . . . . . . . . . . . . . . . . . . . . . . . . 6
tUpdate Sx = Sx + {t} . . . . . . . . . . . . . . . . . . . . . . . . . 1
tZx = Zx + texec_time . . . . . . . . . . . . . . . . . . . . . . . . 1
tmpT = t . . . . . . . . . . . . . . . . . . . . . . . . 1

While (total faults are covered) // Max N times (no of all Test Cases)
// Loop 1 (Innermost loop)—ENDS
EndFor // Loop 2 ENDS

minTime = min {Zx} . . . . . . . . . . . . . . . . . . . . . . . . N * EF
currTime = CuurTime + minTime . . . . . . . . . . . . . . . . . . . . . . . . 1
Zx = 0, for all x =0 to N × EF . . . . . . . . . . . . . . . . . . . . . . . . N × EF
Update pheromone on all egdes of bestPath with minTime . . . . . . . . . . . . n − 1
Evaporate k% pheromonee from each edge . . . . . . . . . . . . . . . . . . . . . . . . n − 1
Last_Path = Sx for k of the last iteration of Loop2 . . . . . . . . . . . . . . . . . . . . . . . . 1
Sx = null for all x . . . . . . . . . . . . . . . . . . . . . . . . EF

While (TC ≥ currTime) // End of Loop 3

// MODULE select_test_case is presented below (As taken from [7,8])
select_test_case (x, next_node)
{
If(max_pheromene edge out of all the edges from next_node to a node ‘k’
(W[nxtnode][k] ) does not exist in S[i][1 . . . N]) . . . . . . . . . . . . . . . . . . 2

Then
Return ‘k’ . . . . . . . . . . . . . . . . . . . . . . . . 1

Else
Select a random edge [next_node,k], from next_node to node ‘k’ not existing in

P[i][1 . . . N], from all edges having next max (W[nxtnode][h])
. . . . . . . . . . . . . . . . . . . . . . . . 3

Return ‘h . . . . . . . . . . . . . . . . . . . . . . . . 1
}

Stage 1 represents the initialization stage. The cost of the edges is initialized to be nil.
EF is read from the user and corresponding digital ants are created. A set of paths and
other variables are also initialized as above. The total complexity of Stage 1, say S1, can be
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computed by adding the individual complexity of all the sequential statements from above
as follows:

S1 = 1 + 1 + 1 + (n× EF) + (n× EF) (5)

S1 = 3 + 3× (n× EF) (6)

The exploration of various paths keeping in mind the multiple objectives of fault
coverage and budget time happens in this stage. Over the various repetitions of the do-
while loop, pheromone updates occur, causing the next digital ants to exploit the already
discovered potential paths. The complexity of Stage 2, say S2, can be calculated stepwise
from the above individual statement complexities as shown below:

Complexity of Loop 1 = n × (6 + 1 + 1 + 1) = 10 × n (7)

Complexity of Loop 2 = n × EF × (2 + (10 × n)) = 2 × EF × n + 10 × EF × n2 (8)

Complexity of Loop 3 = Const × (3 × EF + 2 × (n − 1) + 2 + (2 × EF × n + 10 × EF × n2)) (9)

(Taking ‘C’ to be some positive constant)

S2 = C× (10× EF× n2 + 2× EF× n + 2× n + 3× EF) (10)

Stage-3
Stage 3 takes constant time steps to find the best out of the potential best paths accord-

ing to the pre-decided multi-objectives. This stage takes (9—constant time instructions) as
the worst-case complexity

S3 = 9
Thus, the Total Complexity of the improved algorithm can be calculated as:

S = Complexity of (Stage 1 + Stage 2 + Stage 3) (11)

S = S1 + S2 + S3 (12)

S = 3 + 3 × (n × EF) + C × (10 × EF × n2 + 2 × EF × n + 2 × n + 3 × EF) +9 (13)

S = C × 10 × EF × n2 + C × 2 x EF × n + 3 × EF × n + C × 2 × n + C × 3 × EF + 12 (14)

S ≤ C × 10 × EF × n2 + C × 2 × EF × n + 3 × EF × n + C × 2 × n + C × 3 × EF + 12 × EF (15)

(taking C1 = C x 3 +12, to be some other positive constant)

S ≤ C × 10 × EF × n2 + C × 2 × EF × n + 3 × EF × n + C × 2 × n + C1 × EF (16)

S ≤ C × 10 × EF × n2 + C × 2 × EF × n + 3 × EF × n + C × 2 × n × EF + C1 × EF × n (17)

(taking C2 = 3 + C × 2 + C1 + C × 2)

S ≤ C × 10 × EF × n2 + C2 × EF × n (18)

S ≤ C × 10 × EF × n2 + C2 × EF × n × n

(taking C3 = C × 10 + C2)
S ≤ C3 × EF × n2 (19)

(Na is also a positive constant, thus C4 = C3 × EF, be another positive constant)

S ≤ C4 × n2 (20)

Therefore, the overall complexity of the proposed can be approximated as n2, or in
terms of Big-O notation, it is O(n2) or O(|TS|2). This is the same as the complexity of the
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old ACO_TCSP algorithm. Thus, the proposed approach is found to be as time efficient as
the earlier approach (ACO_TCSP).

6. Experimental Design

The proposed approach (Enhanced ACO_TCSP) has been developed in C++. The
organization of the code included ten modules and five global functions. The time for
executing the code was computed with the help of a clock() function (available in the file
“time.h”). The code was implemented on Macbook Pro 2011 model hardware, macOS
10.12 Sierra operating system and the C++ runtime environment used to run the code
was Code::Blocks.

6.1. Benchmark Programs

We used 4 programs as benchmark programs. P1, P2, P3, and P4 were chosen so that
the cases for minimum (P8), maximum (P2), and medium (P1, P3) correctness found by the
previous algorithm could be compared with the proposed algorithm. Concise depiction of
the programs, the lines of code in them, the mutations induced, and the test suite execution
times are listed in Table 1.

Table 1. Depiction of Benchmark programs.

Program Program Title Lines of Code
(kloc) No. of Mutations Test Suite

Size (TS)
Execution Time

(ms)

P1 Coll_Admison 0.281 5 9 1.0532

P2 Triangle_sides 0.037 6 19 3.82

P3 Basic_calculator 0.101 9 25 0.825

P4 Railways Booking 0.129 10 26 1.77

6.2. Design

Each benchmark program was executed on 4 varying values of the EF (Enhancement
Factor), along with 5 varying TC values. ACO being an approximation technique, does not
yield the same result for the same set of inputs every time. Henceforth, 10 runs for each EF
value for each program and each TC value were recorded (10 * 4 * 5 = 200 runs for each
program). Every execution run returns the path found (may be optimal or non-optimal).
The time constraints chosen as the termination criteria were chosen to be 200, 300, 400,
500, and 600 with forty runs of each program. Reduction in total execution time needed,
resultant optimality of solution, and the correctness of the technique were obtained from
the output data. We also found the percentage improvement in correctness using the
new algorithm.

6.3. ACO Parameter Settings for Enhanced ACO_TCSP

To maintain the levels of exploration (finding new paths) and exploitation (using
existing pheromone knowledge) five ACO parameters need to be set in order to produce
the near optimum results. Various parameter settings have been suggested and used
over the years [8,38,39]. On the basis of experimentation and results from [8] and the pro-
vided enhancements, the parameter settings used for Enhanced ACO_TCSP are described
in Table 2.

Alpha α, and Beta β are the control parameters to keep in check the exploration versus
exploitation balance of ACO algorithm. The values chosen were kept the same as used by
many researchers and in [7,8]. 10% Evaporation rate was used to make sure that digital
ants map to real ants, and that the pheromone does not keep on depositing, it evaporates at
the end of each iteration. Additionally, +1 was tuned to be the amount of pheromone to be
deposited on the edges of the best path. Q0 is a constant used for calculating the amount of
pheromone to be evaporated joint with the evaporation rate. The value of Na was updated
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as per the proposed enhancements. To counter-balance the enhanced exploration, the
value of τ has been updated to ensure elitism and q0 ensures convergence. The rest of the
parameter settings are the same as those used in the earlier version [8].

Table 2. Parameter Values used for Enhanced ACO_TCSP.

Na N * EF

A 1.0 (Parameter to control exploration level)

B 0.2 (Parameter to keep exploitation in check)

P 0.1 (Evaporation Rate of pheromone—10% as used by majority researchers)

T 1.0 (Amount of Pheromone to be deposited on best path edges)

q0 1.0 (chosen constant used on calculation of pheromone to be evaporated)

7. Result Analysis

We now depict and explain the results of the implementation of the proposed enhanced
technique here.

7.1. Execution Time of Paths Discovered

The details about the path and their corresponding execution time for four open-source
programs have been given here. The combined results are shown in the next section.

The Enhanced ACO_TCSP was repeated for 10 Runs with EF values taken as 1, 2, 3,
and 4 for program P1 using five values of TC. The averaged output of 10 runs for four
values of the EF is summarized in Table 3. The details of the rest of the programs have
been omitted due to redundancy and space constraints. However, the graphs depicting the
results of the execution of all four programs have been depicted in the next section.

Possible best paths discovered in each of the 40 (5 TC, 4 EF) runs of Enhanced
ACO_TCSP were compared for their execution times for all 4 test programs and are de-
picted graphically in Figure 4. Unlike previous results, a very slight decreasing trend is
observed for increasing values of EF. It can be thus derived from here that an increased
number of ants (proportional directly to the EF) leads to decreased execution time for the
possible best paths. The exception for P2 is that the possible best path was found every
time due to multiple possible best paths possible in the problem.
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Table 3. Enhanced ACO_TCSP on P1 with varying TC & EF.

RUN Na Running
Time (sec)

Best
Path

Total
Exec.
Time

Best P
Exec.
Time

No. of
Test Cases
Covered

No. of
Iterations

Best P
Found at
Iteration

Optimal
P Found

at Iteration

TC = 200

ants 1 0.054945 8 82.10127 18.796 2 10.7 2.4 2.25

ants 2 0.054945 9 82.3225 18.563 2 10.8 3.8 4

ants 3 0.049451 10 82.54895 18.33 2 10.9 3.2 3.2

ants 4 0.054945 10 82.54373 18.33 2 11 2.3 2.3

avg 0.053571 82.37911 18.50475 2 10.85 2.925 2.945946

TC = 300

ants 1 0.043956 6 80.87737 20.096 2.1 15.3 3.2 3.666667

ants 2 0.06044 9 82.23752 18.647 2 16.2 4.5 4.555556

ants 3 0.054945 10 82.54373 18.33 2 16.9 1.8 1.8

ants 4 0.065934 10 82.53329 18.33 2 17 1.7 1.7

avg 0.056319 82.04798 18.85075 2.025 16.35 2.8 2.8

TC = 400

ants 1 0.049451 8 81.96406 18.946 2 20.8 7.2 7.5

ants 2 0.054945 10 82.54373 18.33 2 22 3.4 3.4

ants 3 0.06044 10 82.53851 18.33 2 22 1.3 1.3

ants 4 0.071429 10 82.52808 18.33 2 22 1.8 1.8

avg 0.059066 82.39359 18.484 2 21.7 3.425 3.289474

TC = 500

ants 1 0.054945 9 82.3225 18.563 2 26.5 6.2 6.555556

ants 2 0.054945 10 82.54373 18.33 2 27.4 3.7 3.7

ants 3 0.06044 10 82.53851 18.33 2 27.8 2.2 2.2

ants 4 0.071429 10 82.52808 18.33 2 27.4 1.3 1.3

avg 0.06044 82.4832 18.38825 2 27.275 3.35 3.358974

TC = 600

ants 1 0.054945 10 82.54373 18.33 2 32.2 5.6 5.6

ants 2 0.065934 10 82.53329 18.33 2 32.5 5.7 5.7

ants 3 0.06044 10 82.53851 18.33 2 32.8 4.2 4.2

ants 4 0.076923 10 82.52286 18.33 2 33 1.8 1.8

avg 0.06456 82.5346 18.33 2 32.625 4.325 4.325

The average number of iterations over 40 runs each, observed in the case of TC and EF
are presented in Figure 5. A steady surge in the number of iterations needed by Enhanced
ACO_TCSP with an increase in input EF values can be observed. This is promising and
encouraging because this implies that there is a reduction in the execution time of possible
best paths earlier in the iterations. This causes more iterations to take place before reaching
the stopping TC. Thereby, higher values of EF, indicate a rise in the number of iterations taken
by Enhanced ACO_TCSP for the execution of the regression test suite under consideration,
for the generation of the selected and prioritized test suite as resultant.
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The average iteration number at which the optimum path is found by the Enhanced
ACO_TCSP execution out of 40 runs and its variation with different EF (no. of ants) is
shown in Figure 6 (tabulated in the last column of Table 2 also). A steady fall in the iteration
number capable of revealing the optimum path with the rising EF is clearly observable. P2
portrays an exception by revealing the optimum path in first iteration for all 200 test runs
each. Consequently, by enhancing EF, the likelihood of locating the optimum path arises at
even earlier stages of the improved technique. This fall in the ‘accurate iteration number’
(iteration that reveals the optimal path for the first time is called the ‘accurate iteration’),
with the increase in EF is the couple effect caused by the improved exploration search space
(that now avoids falling into local optima that could lead to inaccurate iterations), and elite
exploitation of the earlier explored paths.
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The fact that ACO provides an optimum reduction of execution time has been wit-
nessed in the previous section. The results have been averaged over 40 runs with four
varying values of EF on the benchmark programs. The graphical analysis is presented in
Figure 7. There is a slight rise in the reduction of execution time with the rise in EF. The
observations are a result of the enhancements carried out in the technique. Better results
have been yielded even at lesser values of TC, and are well-adjusted by the enhanced
number of ants.
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7.2. Correctness of the Technique

This sub-section tries to prove the correctness of the technique, both theoretically as
well as experimentally using the results of our empirical evaluation.

Theoretically, the improved algorithm ensures that a path is completed if all faults
are found or all test cases have been visited. This ensures that the algorithm would stop
within the computed complexity. In addition, the pheromone is then deposited on the
best path from each iteration, ensuring exploitation of already found paths. ACO is a
randomized approximation approach. Hence, the authors do not claim that the final test
suite has minimum execution time. However, it is definitely found that the best APFD or
fault coverage would be achieved by the final test suite. Experimentation will prove how
many times ACO results in minimum execution time as well.

In order to prove the correctness of the proposed technique, Figure 8, Figure 9, and
Table 4 shall be used to depict the correctness of the proposed work.

The percentage correctness of the Enhanced ACO_TCSP versus the EF has been picturized
graphically in Figure 8. A very motivating and clear observation is the rise in the correctness
achieved with the rise in EF (no. of ants). This validates the improvement and enhancements
made in the prior ACO technique, which now is not falling to the local optima problems.
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Table 4. Percentage improvement in Correctness Achieved by Enhanced ACO_TCSP.

Prog. No. OLD % Correctness NEW %
Correctness % Improvement

P1 65.714 95 44.565846

P3 100 100 0

P6 47.143 79.5 68.635853

P8 18.571 46 147.69802

Figure 9 depicts the improvement of percentage correctness achieved by the Enhanced
ACO_TCSP approach. The achieved percentage improvement is nearly 50% in general,
while for the earlier worst case of P4 using ACO_TCSP, an improvement of 147.7% is
achieved using Enhanced ACO_TCSP. This clearly proves that the proposed and improved
algorithm is better than the old ACO_TCSP algorithm.

7.3. APFD and Statistical Analysis

In order to obtain APFD (Average Percentage of Faults Detected), we calculated the
area below the plotted line using a graph plot drawn between % of faults detected with the
number of test cases needed. The notations used for calculation of APFD are:

‘TS’: the test suite containing the set of ‘|T|’ test cases,
‘F’: the set of ‘|F|’ faults revealed using ‘TS’.
For prioritization of test suite ‘TS’, let TFi denote the priority order of the initial test

case revealing the ith fault. The APFD for ‘TS’ can be obtained from the following equation:

APFD = 1− TF1 + . . . + TFm
|T|∗|F| +

1
2∗|T| (21)

Although, APFD is the popularly used criteria for the evaluation of the techniques
used in the prioritization of test cases. Maximization of the APFD is not the objective of
test case prioritization techniques. Maximization of APFD is a possibility when it is known
in advance which faults are killed by a given test suite, thereby implying that the execution
of entire test cases is already completed. Then, there would be absolutely no need for
prioritization of test cases. APFD is thus needed after the task of prioritization for the
evaluation of the prioritization technique.

The Enhanced ACO_TCSP orderings achieved for the four sample programs have
been empirically evaluated (with respect to: No order, Random order, Reverse order, and
optimum order of the test cases). These approaches are evaluated using APFD. Figures 9–12
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depict the results obtained. It is evident that ACO attains results similar to that of optimum
ordering, and has been shown to outweigh the reference techniques in terms of % of fault
coverage achieved.

From Figure 10, it can be inferred that the same APFD value of 72.22% is achieved for
the optimum and the ACO ordering for P1. Similar results are yielded for other programs
also, as depicted in Figures 11–13.

The best APFD results achieved using the improved ACO algorithm, as depicted
above, ensure that not only the maximum faults are covered in the entire test suite, but also
maximum faults are revealed at earlier stages of running the prioritized test suite. These
further motivate us to use the Enhanced ACO_TCSP algorithm.

In order to further ascertain the efficiency of our proposed work, we statistically ana-
lyzed the performance of existing ACO and the proposed Enhanced ACO_TCSP approach.
We use the Independent Two Sample t-Test for statistical analysis. The objective here is
to inspect if the proposed technique is more efficient than its earlier version. For this, we
apply a t-test to compare % correctness and % time reduction achieved in the case of the
four benchmark programs.
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Figure 13. APFD for P4.

The Null Hypothesis (H0) for the t-test is taken as:

(H0.) There is no significant improvement in the performance of Enhanced ACO_TCSP (in
terms of % correctness and % time reduction) as compared to its earlier version (ACO_TCSP)
for test data selection and prioritization.

To ascertain our claim, proving our research hypothesis and thereby rejecting the H0,
the outcome of statistical analysis was conducted using Python language. The outcomes
have been tabulated in Table 5 and depicted in Figures 14 and 15 below.

Table 5 can be observed to find that the probability of H0 being true is significantly
less (p-value < 0.5). Thereby we can reject the H0 (Null Hypothesis) and state that our
research hypothesis is true, that is, our proposed technique exhibits significantly improved
performance over its earlier version.

Table 5. p-value obtained after applying an independent two-sample t-test.

p-value obtained for % correctness 0.05896016215814072

p-value obtained for % time reduction 0.11581073519437922
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The results of the t-test can be graphically analyzed using the following box plots:
Encouragingly, Figures 13 and 14 help us to unambiguously show the significant

improvement achieved in the case of Enhanced ACO_TCSP in terms of % correctness and %
time reduction for test case selection and prioritization. This provides a concrete validation
to the proposed enhancements and motivates us to further use the enhanced approach in
the field.

8. Discussion

In this paper, an enhancement of ACO for improving the test case selection and
prioritization technique proposed by Singh et al. [7] has been developed and validated
on four benchmark programs. Moreover, a comparison with five traditional prioritization
techniques has been accomplished using APFD. The results achieved are encouraging
owing to the following reasons:

(1) The proposed technique results in the minimization of the test suite as the EF increases,
(2) The running time is substantially reduced, and with the rise in EF, it is further reduced,
(3) The precision of results achieved is encouraging for most of the test programs,
(4) The percentage improvement in correctness is very high compared to the

previous technique,
(5) A comparison of the Enhanced ACO_TCSP prioritized test suite with No Order, Re-

verse Order, Random Order and Optimal Order prioritized test suites using APFD
has been carried out. The results yielded APFD values for ACO that are equivalent
to the optimum values (values that have maximum possible fault exposure in mini-
mum possible time). The effect of the enhancement factor for different values of EF
depicted motivating observations validates the Enhanced ACO_TCSP against the old
approach [31]. The time reduction for the chosen resultant test suite by ACO was
found to be almost the same for varying values of EF. This is due to the balancing
provided by the increase in the number of ants for the new algorithm. The resultant
test suite thus obtained potentially provides fast fault coverage.
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The investigation of the usage of enhancement factor for different values of EF steers
one to the following substantial leads:

1. A higher number of possible best paths are found at increased EF.
2. The selected best path is about the same for low and high values of EF.
3. The iteration number for convergence of Enhanced ACO_TCSP reduces with the

increase in EF, this validates more exploration at the initial stages of the algorithm also.
4. Enhanced ACO_TCSP tends to yield optimum results at higher values of EF.

In addition to the above, statistical validation of the Enhanced ACO_TCSP has also
been conducted. An Independent Two Sample t-Test has been performed to examine
the correctness and execution time improvement achieved. Box Plots have also been
used to represent the same. To affirm the validation of Enhanced ACO_TCSP, the t-test
produced excellent results. All the aforementioned observations indicate that the proposed
Enhanced ACO_TCSP technique yields promising solutions and exhibits better results
than the existing technique in terms of solution correctness. The paper contributes to
the literature by presenting the Enhanced ACO_TCSP approach and providing detailed
enhancements and their validation on four benchmark programs without compromising
the complexity of the algorithm. This can be easily re-implemented and fruitfully used by
researchers for selecting and prioritizing test cases in the future.

9. Conclusions and Future Scope

The enhanced ACO_TCSP proposed in this work enhances the search space and
makes the exploitation elite. The experimental results of the proposed approach on four
benchmark programs were found to validate the enhancements. The average accuracy of
the Enhanced ACO_TCSP was found to improve by over 30% over the original ACO_TCSP
approach. Furthermore, the optimal paths converged at earlier iterations. All this could be
achieved without an increase in execution time. This was ensured by the stopping criteria
of TC (time-constraint) entered by the user. In addition to this, APFD analysis also proved
the earlier exposure of faults achieved in comparison with the traditional prioritization
approaches. Hence, as in the real world, increasing the size of the ant colony ensures
more exploration, and elitism ensures intelligent exploitation of the already discovered
paths. As in real ants, these ensure finding the optimal path with earlier convergence.
Henceforth, this paper presents and validates the Enhanced ACO_TCSP approach for
solving regression test selection and prioritization. As a part of future work, we can
implement newer techniques [40] and empirically evaluate them for test case selection
and prioritization. The proposed enhancements in ACO_TCSP proposed in this work can
be applied and tested on many more metaheuristics that have been applied in the area
of test case selection and prioritization for better efficiency in terms of results, without
increasing the time complexity of these techniques. The limitations of the proposed work
are as follows. The results have been experimentally evaluated on small codes. They can
be experimentally evaluated in future work. The limitations associated with ACO as a
methodology are also applicable to our proposed technique; however, the most prominent
limitation of ACO getting stuck in local minimum has been averted using our technique
due to the proposed enhancements. We have tried to imitate the behavior of real ants in
our work; however, the intuitive behavior of the real ants cannot be incorporated even in
the Enhanced ACO_TCSP technique.
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