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ABSTRACT Task scheduling is a crucial challenge in cloud computing paradigm as variety of tasks with 

different runtime processing capacities  generated from various heterogeneous devices are coming up to cloud 

application console which effects system performance in terms of makespan, resource utilization, resource 

cost. Therefore, traditional scheduling algorithms may not adapt to this paradigm efficiently. Many existing 

authors developed various task schedulers by using metaheuristic approaches to solve Task scheduling 

problem(TSP) to get near optimal solutions but still TSP is a highly dynamic challenging scenario as it is a 

NP hard problem. To tackle this challenge, this paper introduces a multi objective prioritized task scheduler 

using improved asynchronous advantage actor critic(a3c) algorithm which uses priorities of tasks based on 

length of tasks, runtime processing capacities and priorities of VMs based on electricity unit cost using multi 

cloud environment. Scheduling process carried out in two stages. In the first stage, all incoming tasks, VM 

priorities are calculated at the task manager level and in the second stage, Priorities are fed to (MOPTSA3C) 

scheduler to generate scheduling decisions to map tasks effectively onto VMs by considering priorities and 

schedule tasks based on cost, resource utilization, makespan in the available multi cloud environment. 

Extensive simulations are conducted on Cloudsim toolkit by giving input trace different fabricated data 

distributions and real time worklogs of HPC2N, NASA datasets to the scheduler. For evaluating the efficacy 

of proposed MOPTSA3C, it compared against existing techniques i.e. DQN, A2C, MOABCQ. From the 

results, it is evident that proposed MOPTSA3C outperforms existing algorithms for makespan, resource 

utilization, resource cost, reliability.  

INDEX TERMS Cloud Computing; makespan; Resource utilization; Resource cost; DQN; A2C;MOABCQ 

I. INTRODUCTION 

Cloud Computing paradigm gives seamless access to 

compute, storage, network access in terms of various 

services to all the users around the world by accessing them 

from their web browser with any type of device [1].  These 

services provided by cloud service provider(CSP) through 

this paradigm mainly categorized as Infrastructure as a 

service in which virtual infrastructure to the user to be 

provided to deploy their applications directly on cloud 

environment and access it from anywhere in the world. 

Platform as a service in which CSP provides a platform to 

users to develop their applications by providing necessary 

software, run time, development environment as a service. 

This service gives a great relaxation to the users as they don’t 

need to worry about  setting the development environment 

and software licenses, patching of software and they can 

focus on development of the application by saving time and 

investment in infrastructure. Software as a service provides 

readymade software services provided to cloud users on 

demand based on the requirement [2], [3]. All these services 

are to be provided to cloud users around the world on 

demand based on user requirement i.e. Service Level 

Agreement (SLA). These resources are to be made available 

to users with a technique known as virtualization. All these 
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virtual resources should be made available to users around 

the clock without having down time. It is possible only when 

these virtual resources are properly managed by the CSP. 

Therefore, it is important to employ an efficient task 

scheduler which schedules variety of tasks onto existing 

resources provided by CSP. It plays a major role in cloud 

paradigm from both the facets of cloud provider, user. It will 

be helpful for CSP in a way that it schedules all the tasks/jobs 

from various users around the world to the available virtual 

resources in the cloud paradigm automatically but this is a 

difficult challenge for a CSP to choose an algorithm which 

automatically manages and schedules all tasks onto virtual 

resources because the generated tasks are of different in size, 

runtime processing capacities and moreover that all tasks 

from users cannot be processed on a same type of a virtual 

resource. Therefore, choosing a proper virtual resource for a 

task is a main challenge. Employing an efficient task 

scheduler  helps user to execute their tasks on an appropriate 

virtual resource and thereby helps user to provide quality of 

service and not violating SLA. The importance of the task 

scheduler in cloud paradigm is it effects various parameters 

directly or indirectly and it effects both CSP and cloud users. 

Resource utilization is one of the important parameter to be 

effected in cloud paradigm if a scheduler is not properly 

employed by the CSP. It results directly either into 

overutilization or underutilization of resources. It directly 

effects both CSP and users. From the facet of cloud user, it 

will be a direct effect if the resource utilization is very much 

high and if tasks are not accommodatable in the existing 

infrastructure, CSP would require more number of virtual 

resources which results in increase of resource costs and it 

will also impact on availability of a virtual resource to the 

user. Therefore, it is very important to choose and employ a 

scheduling algorithm which should  carefully checks type of 

tasks, run time capacity and accordingly it should map tasks 

to suitable virtual resources. All the types of tasks cannot be 

mapped to same type of virtual resources. Therefore, it is the 

responsibility of CSP to carefully employ a scheduling 

algorithm to get balance between CSP and user to compute 

and facilitate all the requests of users in an efficient way 

which gives benefits to both users and CSP. Many existing 

task scheduling algorithms are proposed using various 

metaheuristic approaches i.e. GA [4], PSO[5], ACO[6], 

HEFT[7] etc. These metaheuristic approaches generates near 

optimal solutions as the scheduling problem in cloud 

computing is NP-Hard. Existing authors also used various 

Machine learning and Deep learning techniques i.e. 

DRBTSA[8], MOABCQ[9], RATS-HM[10] and few 

authors used hybridized approaches combining AI and ML 

algorithms with metaheuristic approaches to tackle task 

scheduling i.e. AINN-BPSO[11], [12] but still all these 

generates near optimal solutions in their perspective and 

addressed parameters makespan, energy consumption, 

resource utilization but these algorithms still suffers from 

adopting to heterogeneous tasks as it is a dynamic 

environment and scheduling these variety of tasks to 

appropriate precise VM is a challenging scenario while 

balancing the resource utilization and resource cost in multi 

cloud environment. Therefore, to tackle this issue, in this 

paper, we formulated a multi objective task scheduling 

approach which considers priorities of tasks based on their 

size, runtime capacity and priorities of VMs based on unit 

electricity cost. Schedules will be generated by using a deep 

reinforcement learning technique asynchronous advantage 

actor critic (a3c) algorithm in multi cloud environment 

which minimizes makespan, resource cost and improves 

resource utilization. The reason to choose a multi cloud 

environment is that while scheduling tasks to virtual 

resources there may be a chance of unavailability of 

resources in cloud environment or there may be a chance of 

increase in cost of resources in the cloud environment. 

Therefore, to minimize resource cost and improve resource 

utilization while scheduling the task our proposed 

MOPTSA3C scheduler checks for the pricing of requested 

resource and availability in multiple cloud environments and 

schedule tasks into that respective cloud environment while 

minimizing resource cost. 

A. MOTIVATIONS AND CONTRIBUTIONS 

 

Task Scheduling problem (TSP) plays a major role in cloud 

computing paradigm as it effects quality of service renders 

to customers and CSP while improving resource utilization, 

minimizing makespan, resource cost. It is important to 

employ an efficient task scheduler in this environment as if 

an incoming task is not scheduled to a suitable/precise virtual 

resource without considering size of tasks, runtime capacity 

then that task scheduling algorithm generates schedules 

which results in increase in makespan, improper utilization 

of resources. Therefore, it causes a serious problem to CSP 

by not utilizing virtual resources thereby effecting the 

makespan which results in increase of resource cost which is 

a serious concern for the cloud users. Therefore, this 

motivates us to tackle this problem using a reinforcement 

learning approach (a3c) which takes priorities of tasks, VMs 

based on unit electricity cost and checks resource availability 

and the cost of virtual resource in multiple cloud 

environments and it generates schedules while addressing 

makespan, resource utilization and resource cost. The main 

objectives and highlights of this manuscript are presented 

below. 

1. A multi objective prioritized task scheduling 

algorithm is formulated using reinforcement 

learning strategy. 

2. For effective scheduling process, we have 

incorporated priorities of tasks, VMs based on unit 

electricity cost to schedule tasks in multi cloud 

environment. 

3. Improved Asynchronous advantage actor 

critic(a3c) algorithm is used as methodology in this 

research to tackle task scheduling problem in cloud 

computing. 
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4. Simulations are conducted on Cloudsim to generate 

schedules and it is compared against existing 

DRLBTSA, MOABCQ, RATSHM approaches. 

5. Fabricated data distributions, HPC2N, NASA 

worklogs  are used as input to this approach to 

evaluate its efficacy. 

6. Finally, we evaluated parameters makespan, 

resource utilization, resource cost, reliability by 

using MOPTSA3C. 

Rest of the manuscript is organized as follows. Section 

II discusses related works, Section III discusses System 

architecture, Section IV discusses asynchronous 

advantage actor critic algorithm which is the 

methodology used in this research, Section V discusses 

results, Section VI discusses Conclusion & future 

works. 
II. RELATED WORKS 
 

This section clearly presents existing  algorithms formulated 

by various authors to tackle task scheduling in cloud 

computing. For minimization of total cost, energy 

consumption, authors in [13] proposed a task scheduling 

algorithm based on bi directional GGCN to choose precise 

VMs to deploy jobs or requests from various users. Authors 

used a randomized dataset to evaluate scheduler capability. 

It was implemented on COSCO framework in which they 

used Defog benchmark for scheduling in this approach. 

Hunter plus model is evaluated with different variations of 

CNN and results shown huge impact over other variations by 

minimizing energy consumption, job completion rate. 

Authors in [14], [15] proposed a task scheduling algorithm 

in multi cloud environment to tackle trust based parameters  

by using a hybrid approach FTTHDRL which is a 

combination of Harris hawk optimization and DQN model 

which is a reinforcement learning based approach. In this 

process, scheduling performed in two stages. In the first 

stage, task selection and mapping to the VMs are performed 

using Harris Hawk algorithm. In the second stage, 

scheduling optimization is performed by DQN model to 

adapt to dynamic nature of cloud paradigm as it is difficult 

to identify and schedule tasks precisely. It was implemented 

on Cloudsim and conducted rigorous simulations are done by 

using realtime worklog traces. Finally, it was evaluated over 

state of art approaches to check the efficacy of approach. 

Results proved that FTTHDRL improves trust on cloud 

provider through SLA based parameters. Authors in [16] 

proposed a hybrid task scheduling mechanism which 

addressed makespan, resource utilization, processing cost. 

They used three algorithms in total to perform scheduling 

process. Initially task collection and prioritization performed 

using HEFT, initial solution generated using GRASP, 

schedules generated using BABC algorithm with pareto front 

technique. It was implemented using workflowsim. It was 

evaluated over state of art algorithms and results of EBABC-

PF shown dominance over them for the above specified 

parameters. 

 In [17], a hybrid workflow scheduling algorithm proposed 

using HEFT, BAT approaches. It was implemented on 

workflowsim by using random workload but authors 

considered various realtime scientific workflows to evaluate 

MOHBA. This approach was compared against 

contemporary approaches and results shown impact over 

existing algorithms for improvement of makespan, resource 

utilization. Minimizing energy consumption in datacenter by 

making green computing environment is the target of authors 

in [18,19] and this aim made them to develop a VM 

placement algorithm by taking the constraints VM 

dependency, type of topology. This VMP algorithm chooses 

the place of VM based on above said constraints by making 

the unused switches to become idle and by reducing resource 

waste by improving resource utilization. Modified discrete 

Jaya optimization was used as methodology in this approach. 

A customized simulation environment was developed by 

authors considering various scenarios by varying different 

number of VMs to evaluate energy consumption, total task 

time, makespan.  

Authors in [20] proposed a hybrid task scheduling approach 

which combines wild horse optimization, levy flight 

operator. In the first stage of scheduling, task distribution 

model developed based on schedule length, time, cost. In the 

second stage, generated schedules will be optimized by levy 

flight operator to improve local search process and to avoid 

premature convergence. Cloudsim tool used to implement 

this approach. It compared over existing state of art 

approaches WOA, MSA,ALO, MALO for evaluating 

parameters makespan, energy consumption. Simulation 

results proved that IWHOLF-TSC dominated all existing 

approaches for above mentioned parameter. 

 In [21], authors proposed a hybrid approach HWACO which 

works based on weights imposed to converge towards 

solutions easily compared with conventional approaches. 

Cloudsim used as simulation toolkit in this research. It 

compared against conventional approaches ACO, QANA, 

BPSO, FCFS. Randomized workloads are given as input to 

the HWACO. Analysis of results shown that HWACO 

outperformed conventional approaches in view of cost, 

efficiency, makespan. A trust based task scheduling 

algorithm developed using firefly algorithm in [22], [23] to 

address makespan, availability, turnaround efficiency which 

effects trust on CSP. They used prioritized scheduling in 

which they considered task priorities to carefully schedule 

tasks to map virtual resources. It was implemented on 

Cloudsim toolkit. TAFFA took an input trace from HPC2N, 

NASA worklogs. It evaluated over state of art approaches 

and observed that above mentioned parameters are greatly 

minimized. A fault tolerant aware scheduler with multiple 

objectives while considering QoS constraints is developed 

using GBFD which minimizes expenditure cost for users and 

success rate for CSP was proposed in [24]. Simulation with 

real world cluster taken as input and performed on Cloudsim. 

It evaluated against existing task scheduling mechanisms i.e. 

FCFS, CGDPS, MBFD. Results proved that GBFD 

outperforms other algorithms in various scenarios for 

improvement of fault tolerance, user satisfaction.  
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Minimization of task execution time by assigning a suitable 

task to an appropriate virtual resource is discussed in [25]. 

For this to happen, GA combined with map reduce 

architecture is proposed in [25], [26]. This scheduler works 

in two stages. In first stage,  tasks are assigned to processor 

by scheduling it with GA. In the second stage, GA with map 

reduce is combined and assigns heterogeneous tasks to 

processors in parallel with the help of priority queues. 

Simulations conducted using MATLAB software by using 

random task generation. From results it proved that GA 

combined with MapReduce greatly minimizes task 

execution time over PSO, GA, IWD, MFO, GA algorithms.  

 

In [27], a three layered task scheduling model which 

minimizes makespan in Cloud paradigm. In first layer, a 

model that uses opposition based learning technique which 

uses adaptive mobility factor to expand search strategy. In 

the second layer, a whale optimization based gaussian 

approach formulates multi objective task scheduling model 

which minimizes task completion time. Finally, in the third 

layer GCWOA strategy implemented to optimize scheduling 

process. This model was implemented on MATLAB 

software by using random workload. Finally, GCWOAS2 

improves resource utilization, makespan over ACO, WOA, 

PSO algorithms. Scheduling cost, time plays a major role in 

task scheduling cloud paradigm from both facets of cloud 

user and CSP. These issues addressed by authors in [28,29] 

by developing a scheduling algorithm using improved whale 

optimization. Initially a task scheduling, distribution model 

was developed by considering scheduling time, cost 

constraints. After this phase, by using inertia weight strategy 

whale optimization algorithm applied on this model to 

choose best whale i.e. in this case it is best possible task to 

map on to a VM. MATLAB tool was used as simulation tool 

for simulation. Results of IWC greatly minimizes scheduling 

cost, time when it was compared over PSO, ACO, WOA. 

Energy consumption in datacenters is a crucial part as 

number of users are getting increased in this model, thereby 

difficulty arises in efficient distribution of tasks, balancing 

the load among different VMs. This problem was tackled by 

authors in [30] by using a hybrid approach by combining 

squirrel search with improved GA. Proposed hybrid method 

improves makespan, execution time and energy consumption 

when it was compared  ACO, PSO, GA algorithms for the 

above specified parameters. 

 In [31], [31], authors developed sub models to improve 

performance of task scheduler. They used reinforcement 

learning and queuing models to formulate sub models i.e. 

Task scheduling model, execution model, transmission 

model to identify repetitive processes to optimize 

performance of the scheduler by using aggregators.  

Experimentation conducted using MATLAB software. With 

this approach efficiency of task scheduling improved by 

taking server rate, arrival rate of tasks as constraints when it 

is compared against state of art approaches. Scheduling 

analytics jobs in cloud paradigm is difficult as those jobs 

confined with different computing characteristics. Therefore 

authors in [33] proposed a RL based framework spark 

deployed cloud cluster which consists of two RL based 

frameworks to schedule jobs which tackles multiple 

objectives VM usage cost, job duration. Results shown that 

there is a huge impact on improvement of VM usage cost, 

job duration on existing frameworks which are configured 

with conventional algorithms.  

Resource utilization, task execution time gained importance 

in task scheduling in cloud computing as workloads in this 

model drastically increased and to automate this scheduling 

process is a must in cloud model. To handle this situation, 

authors in [34] proposed a task scheduler with different RL 

approaches i.e. RL, RLL-LSTM, DQN, DRL-LSTM. Out of 

these four DRL-LSTM improves memory usage, CPU usage, 

task execution time over SJF, RR, IPSO. 

 In[35], [36], an energy efficient based task scheduling 

algorithm developed using Deep reinforcement learning. 

This scheduler was implemented using  Cloudsim toolkit and 

assumed that entire architecture as public cloud because 

users in public cloud can generate any number of tasks at any 

time. It was compared over conventional heuristic 

approaches in view of energy consumption, response time. 

Results proved that DRL based scheduler improves above 

said parameters while scheduling jobs efficiently when it is 

evaluated over conventional approaches. Streaming 

applications causes lot of challenges in cloud paradigm as 

they need to be scheduled with specific virtual resources 

configured with streaming set of configuration of resources. 

This problem solved by authors in [37] by deriving a 

dynamic online task scheduler which need to schedule huge 

processing capacity tasks to limited virtual resources which 

need to render good QoS services. This scheduler modeled 

by using DDQN model which have adaptive learning 

especially required in cloud model. DDQN-TS evaluated 

over conventional metaheuristics with random, google 

workload traces, Alibaba benchmarks and observed the 

improvement in evaluated parameters task completion rate, 

average response time over state of art approaches.  

In [38], a bi objective task scheduling algorithm developed 

using DQL. Initially Q-learning was combined with Deep 

neural network to gain advantages of Q-learning. Primary 

concerns in formulation of this scheduler is to improve 

resource utilization, makespan. DQL implemented on 

workflowsim and compared over MIN-MIN, FCFS, MAX-

MIN, RR algorithms. Results revealed that DQL based 

scheduler improves resource utilization, makespan over 

existing algorithms. In [39], energy aware task scheduler 

concerned with addressing multiple objectives formulated by 

using an AINN model. Initially all tasks from various 

resources are scheduled accurately using AINN model by 

predicting suitable VM for all incoming tasks. Input dataset 

generated by using GA algorithm which consists of 18 

million instances. MATLAB tool used to simulate this 

model. It evaluated over MIN-MIN, GA, Linear regression 

models and AINN scheduler revealed that improvement in 

average makespan, energy consumption, execution 
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overhead, active racks by 59%, 45%, 88%, 70% respectively 

over compared approaches. 

 In [31], authors formulated a task scheduling mechanism 

which focused on energy consumption, SLA violations. 

Methodology chosen by authors is a Deep Reinforcement 

Learning model and it consists of two stages. In first stage, 

Deep learning model is deployed in which QoS features were 

extracted using autoencoders. In second stage, a 

reinforcement learning approach which uses collaborative 

learning through which characteristics of a task can be easily 

deduced and scheduled onto a virtual resource. Extensive set 

of simulations were conducted using MATLAB. From 

results, it shown that proposed approach outperformed over 

state of art algorithms in view of SLA violation, energy 

consumption, QoS.  

Authors in [40], [41] proposed a cost aware task scheduler to 

handle realtime workloads to be scheduled onto VMs which 

should minimize cost to run on VMs. DRL model i.e. DQN  

is used as methodology to implement this cost model. 

Pytorch is used as tool to train and evaluate parameters. DQN 

was compared over conventional mechanisms i.e. RR, 

Random, Earliest schedulers as they are used as conventional 

mechanisms to process batch workloads. Finally, results 

proved that DQN surpassed existing algorithms over 

parameters Success rate, Average Response time, Cost of 

execution of tasks on VMs. A Three level scheduling policy 

is designed in [42] by authors to address parameters 

makespan, cost. A Deep Q-network model is enhanced to 

adopt this procedure. In the first level, a dynamic adaptive 

coefficient procedure is adapted to precisely estimate target 

value among all diversified values i.e. in this case they need 

to estimate the precise VM for set of tasks. In second level, 

a pointer based agent network is deployed which selects set 

of tasks to identify and send them onto respective VMs for 

processing. In third level, a sensing mechanism was 

deployed to identify objectives of each task set and preserve 

the QoS in the environment. TensorFlow  framework used as 

simulation tool. WDQDN-RL compared over existing 

approaches NSGA-II, MOPSO, DQN-RL. Finally, results 

revealed that WDQN-RL outperforms above algorithms in 

view of makespan, cost.  Energy consumption, makespan, 

Migration time are measured in [43] by formulating a task 

scheduling algorithm by using a hybrid approach. This 

hybrid approach uses capuchin search as local search process 

and inverted ACO as global search process. Simulations are 

conducted using Cloudsim with input of realtime 

supercomputing worklogs. From the outcomes of CapSA, it 

was proved that above mentioned parameters are improved 

in a drastic manner when it was compared over CSO, PATS, 

FHCS approaches.  

In [44], authors formulated a hybrid workflow scheduling 

algorithm (PCP-ACO) which is a combination of partial 

critical path and Ant colony optimization algorithms. In the 

initial stage, PCP heuristic calculates priorities based on sub 

tasks and deadlines involved in workflow. In the final stage, 

metaheuristic will select tasks based on priorities generated 

by heuristic in the initial stage. Simulations conducted on 

workflowsim and evaluated over state of art algorithms. 

Execution cost of PCP-ACO improved by 19%, 17%, 21%  

over L-ACO, HP-GA, IC-PCP approaches.  

In [45], a multi objective task scheduling model formulated 

by authors using an improved a3c algorithm by incorporating 

RCNN which consists of multiple threaded training models 

which helps in assigning tasks to VMs in dynamic 

environment. All the experimentation conducted on edge-

cloud-co simulator. It was evaluated over A3C, 

A3C+LSTM,GOBI algorithms and evaluated parameters 

Average response time, Energy consumption outperformed 

over existing approaches. Authors in [46] proposed an 

adaptive multi objective scheduling strategy proposed using 

a metaheuristic approach. PSO is the metaheuristic used in 

the algorithm which uses adaptive acceleration coefficient to 

explore diversity of search solution space and allot tasks to 

appropriate VMs based on generated solutions. Cloudsim 

toolkit used as simulation platform and evaluated over 

different metaheuristic approaches. Finally generated 

schedules using AMTS improves resource utilization, energy 

consumption over existing algorithms.  

In [47], a two layered scheduling strategy developed using 

EDA, GA metaheuristic approaches. In the initial stage, task 

selection, assignment are done by using EDA and 

expandability of search process is enhanced by GA. Finally, 

optimization of scheduling process carried out by combining 

of both approaches. It simulated on Cloudsim and evaluated 

over classical GA, EDA algorithms. Results proved that task 

completion time greatly minimized, load balancing is 

improved over above classical approaches. Authors in [39] 

proposed a multi objective scheduling mechanism which 

preserves QoS while allocating tasks to suitable VMs. A 

hybrid metaheuristic approach HGA-ACO was used to 

formulate scheduling mechanism in which operators of GA 

are enhanced using ACO and initialization of ACO 

performed using GA approach. All simulations are 

conducted using Cloudsim toolkit and compared against 

classical GA, ACO algorithms. From results, it proved that 

HGA-ACO minimizes response time, task completion time 

over conventional mechanisms. Energy consumption is a 

crucial aspect for both CSP and user in cloud paradigm. 

Authors in [48], [49] aimed at minimization of energy by 

formulation of a task scheduler using NSGA-II, AINN 

techniques. In this approach, initially characteristics of tasks 

and selection of tasks are identified using NSGA-II approach 

by incorporating DVFS technique into NSGA-II. For 

generated tasks, an AINN technique used to predict VM for 

selected tasks in cloud paradigm. Simulation results shown 

huge impact over existing approaches by minimizing energy 

consumption.  

In [50], a task scheduling mechanism formulated using two 

folded biological heuristic approaches. These algorithms are 

GA, BF algorithms in which initial stage formulated using 

GA using different operators to explore search space and 

generated solutions are scheduled using BF approach. These 

generated solutions are compared over conventional 

algorithms. Results shown huge impact over these 
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algorithms with respect to reduction of makespan, energy 

consumption in a huge manner.  

In [51], a task scheduling strategy formulated using an 

improved ACO which considers constraints i.e. makespan, 

user budget and these two constraints are used as feedback 

mechanism in this approach. Improved ACO considers 

feedback of these constraints for every iteration and 

evaluates makespan, cost, deadline violations, utilization of 

resources. Simulation results shown IACO outperformed 

classical metaheuristics in terms of above specified 

parameters. Makespan is one of the primary concern in task 

scheduling as it effects QoS of CSP. Therefore, authors in 

[52] proposed three scheduling approaches, which considers 

various tasks from heterogeneous resources and schedules 

tasks based on peak load at that respective CSP. Three 

scheduling approaches are MCC, MEMAX, CMMNN where 

it considers makespan as primary criteria and thereby 

resource utilization by all these approaches. Finally these are 

evaluated using various synthetic datasets for checking 

efficacy of formulated approaches over conventional 

approaches. All the proposed formulated approaches 

outperforms makespan, utilization of resources over classical 

algorithms.  

Authors in [53] designed a task scheduling approach which 

addresses datacenter infrastructure efficiency, utilization of 

CPU, SLA violations. This model formulated by using RL 

which looks at rewards for every iteration and make a 

decision based on corresponding rewards. It was 

implemented using Cloudsim. With the observations of 

results generated by RL-EERA approach surpassed on 

conventional approaches in view of above mentioned 

parameters by effectively allocating resources to 

heterogeneous tasks. In [54], a task scheduler is formulated 

in two stages using a queuing mechanism and Q-learning 

which is a reinforcement learning. In the first stage, a task 

dispatcher uses M/M/S queuing mechanism to assign tasks 

to virtual resources in cloud paradigm. In second stage, for 

generated assignment of tasks, Q-learning mechanism is 

applied which gives optimized schedules for each task 

assigned to appropriate cloud resources. It was implemented 

using Cloudsim and evaluated over classical approaches to 

minimize energy consumption.  

Authors in [55] designed a scheduling algorithm which 

considers multiple objectives makespan, cost to be 

addressed. These issues are addressed by authors in [56] 

using Markov gaming model which is an AI approach. It 

takes number of requests from different workflows, available 

VMs in cloud model. Extensive simulations are conducted 

by taking AWS EC2 instances. From observing results of 

Markov model based algorithm makespan, cost are greatly 

reduced over conventional algorithms. 

 In [57], a workflow scheduling mechanism developed using 

DRL. It developed in two stages. In the first stage, task 

selection and assignment operations are performed using 

Markov decision model. In second stage, all these schedules 

generated are given as an input to DDQN model to predict 

failures. It was simulated using Workflowsim. It compared 

over classical approaches and observed that improvement in 

makespan, utilization of resources, fault tolerance. For 

achieving optimized makespan results in cloud paradigm, 

authors in [59] developed an ML-based task scheduling 

algorithm which uses Q-Learning and HEFT algorithms. 

This scheduling is divided into two phases. In first phase, 

using a HEFT approach with the help of upward rank task 

sorting phase performed and generates schedules according 

to the ranks. In Second phase, Q-learning applied on 

generated schedules to check whether they achieved better 

optimized results or not. Generated schedules may vary in 

this paradigm as Q-table updated with different values based 

on obtained rewards in previous iterations. QL-HEFT 

compared over HEFT_U, HEFT_D,CPOP approaches. From 

results, it proved that QL-HEFT minimizes makespan and 

improves speedup ratio of tasks in huge manner.  

Authors in [59], [60] proposed a multi objective task 

scheduling algorithm which uses enhanced version of 

multiverse optimizer which is a metaheuristic approach. 

Main aim of authors is to address execution time, cost, 

resource utilization. Adaptive coefficient used to explore 

search space. EMVO compares over MVO, PSO approaches. 

Results shown that EMVO minimizes cost, execution time 

while resource utilization improved significantly when it is 

evaluated against classical approaches. 

Authors in [61] designed a task scheduling algorithm focuses 

on addressing task processing time, makespan. This 

framework designed based on Q-learning which is a RL 

based approach. In first phase, tasks are allocated to virtual 

servers based on server type. In second phase, Q-learning 

based scheduling performed based on past history and 

interactions of tasks with VMs by using a parameter upper 

confidence bound. It works based on RL mechanism which 

is totally reward based. It compared against classical PSO, 

RR algorithms. Upon observing results of QMTSF, above 

said parameters are significantly improved over classical 

approaches. A resource scheduling framework developed by 

authors in [62] using Q-learning which is a RL based 

approach. It was implemented in workflowsim. This 

approach mainly addresses time, cost, deadline analysis, load 

balance in scheduling. When it compared over PSO and 

CSO, resource utilization improved by 63%, rate of task 

acceptance is increased by 54% when it was compared over  

crow search mechanism.  

In [63], [67], a DRL based scheduling approach was 

developed to address makespan, energy consumption, 

throughput resource utilization. It was implemented using 

Cloudsim toolkit and compared with PSO, MVO, EMVO 

algorithms. DRL based approach takes the input of google 

cloud job traces and outperformed over all approaches for  

mentioned parameters. Authors in [64], [68] proposed a 

container based task scheduling algorithm using two folded 

approach. In the first phase, to choose a virtual container, 

MMCO used as methodology for preserving SLA. For 

proper CPU allocation, MPIO approach used for task 

clustering and for allocating tasks accurately to suitable 

virtual server DCNN is used. Finally it was implemented 
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using Kubernetes container to perform containerization and 

when compared over classical approaches DSTS shown 

improvement of makespan and efficient allocation of tasks 

to suitable virtual servers. In [65], [69], an adaptive task 

scheduling algorithm based on Reinforcement learning 

proposed using gradient updation for different cloud 

environments to accelerate and quickly adapt to that 

respective environment. MRLCC compared over existing 

baseline algorithms and proved that resource utilization rate 

is improved in results of MRLCC.  
TABLE I 

TASK SCHEDULING ALGORITHMS PROPOSED BY EXISTING AUTHORS 

Authors Technique used Addressed Parameters 

[11] Hunter Plus model Total Cost, makespan, Energy 

Consumption 

[12] FTTHDRL makespan, Total cost. 

[13] EBABC-PF Makespan, processing cost, 

resource utilization. 
[14] MOHBA  Resource utilization, Makespan, 

energy consumption. 

[15] MOD-JAYA Total task time, makespan, cost, 
energy consumption. 

[16] IWHOLF-TSC Power consumption, Task 

execution time. 
[17] HWACOA execution time, Makespan, Cost. 

[18] TAFFA success rate, availability, 

makespan and turnaround 
efficiency. 

[19] GBFD  Fault tolerance, user satisfaction 

[20] Parallel GA with a 

MapReduce 

total execution time, cost, 

Makespan. 

[21] GCWOAS2 Resource utilization, Cost, 
throughput, Degree of Imbalance 

[22] IWC scheduling cost, task scheduling 

time. 
[23] CTSS Makespan, energy consumption 

and Total power cost. 

[24] Random TSRL Server rate, arrival rate of tasks 

[25] DRL-based 

scheduling 

Gain cost, resource utilization, 

and makespan. 

[26] DRL-LSTM task waiting time and resource 
consumption. 

[27] DRL job success rate, average  

response time, energy 
consumption. 

 

[28] DDQN-TS Estimated completion time, Task 
transfer time. 

[29] DQTS Load balance, makespan 

[30] Artificial Neural 
Network-based 

scheduling 

energy consumption, execution 
overhead, makespan 

[31] Collaborative VM 
scheduling 

energy, cost, resource utilization, 
makespan, SLA 

[32] Deep Q-learning 

network model 

energy efficiency, load balancing 

[33] WDDQN-RL Total power cost in datacentres, 

Makespan, migration 

time, energy consumption. 
[34]  CAPSA & IACO Load balancing, Execution time. 

[35] PCP–ACO Average Execution Cost, 

makespan. 
[36] A3C energy consumption, task 

response time 

[37] AMTS Resource utilization, Task 

Completion time, energy 
consumption. 

[38] EDA-GA task completion time, load 

balancing, cost 
[39] HGA–ACO throughput, completion time and 

response time. 

[40] NSGA Energy consumption and 
makespan 

[41] GA- BF energy consumption, response 

time, makespan 
[42] Improved ACO resource utilization, cost, 

deadline violation rate, 

makespan. 
[43] MCC algorithm makespan and 

average cloud utilization 

[44] RL-EERA accuracy, CPU Utilization, 
Response time. 

[45] QEEC task response time, energy 

consumption and CPU utilization 
[46] DQN Based Multi 

agent RL 

Task completion time and cost. 

[47] RLFTWS makespan, resource usage rate 

[48] QL-HEFT Makespan, total cost, response 

time. 

[49] EMVO resource utilization, Throughput, 
execution time 

[50] QMTSF Average Processing time, 

makespan. 
[51] DR Q-learning Load balancing, energy 

consumption, deadline violation, 

makespan. 
[52] Adaptive DRL throughput, makespan, energy 

consumption, resource 

utilization. 
[53] DSTS throughput, resource residual 

degree, response time, resource 

imbalance degree. 
[54] MRLCC average utilization rate, 

makespan. 

[55] GAGELS Execution time, Resource 
utilization 

[56] SGO based SJF Makespan, throughput 

[57] SG-PBFS Makespan 

[58] MTD-DHJS Makespan 

 

From above Table I it is clearly observed that many authors 

used various metaheuristic, ML, DL based approaches in 

order to solve task scheduling problem in Cloud Computing. 

While addressing task scheduling in Cloud paradigm, 

authors addressed makespan, execution cost, task waiting 

time, energy consumption, power cost, fault tolerance, 

resource utilization and generated near optimal solutions but 

in cloud model still the problem of resource utilization i.e. 

over utilization and underutilization problem persists as it is 

an NP-hard problem. Many authors used various approaches 

to address utilization of resources and failed to get balance 

in between CSP and user as if overutilization occurs resource 

cost will be increased drastically. If resources are 

underutilized configured virtual resources will be wasted 

which incurs huge power consumption. This will create a 

burden on the CSP as well as on user. There may be chances 

that a virtual resource may not be available in cloud 

environment for a specific task or the cost of virtual resource 

service is high in cloud environment. Therefore, to tackle this 
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situation and to address parameters initially, (MOPTSA3C) 

task scheduler by carefully calculates priorities of both tasks, 

VMs which are coming onto cloud application console and 

these tasks are sorted in task manager according to task 

priorities. Prioritized tasks are to be mapped to prioritized 

VMs i.e. in this case VM priorities are evaluated using 

highest electricity unit cost among datacenters to electricity 

unit cost at that respective datacenter. In the second stage, all 

these priorities are fed to scheduler  which uses improved 

A3C mechanism which is a RL based approach generates 

schedules for the collected prioritized tasks. The main aspect 

we used in this research is that we have simulated our 

proposed MOPTSA3C in multi cloud environment to 

minimize resource cost and migrate tasks to respective VMs 

where that respective service cost is low.  

III. MATHEMATICAL MODELING & SYSTEM 
ARCHITECTURE 

This section discusses mathematical modeling and System 

architecture of proposed MOPTSA3C. Initially, for 

mathematical formulation of task scheduler, we consider  

𝒌𝟏 number of tasks indicated as 𝒕𝒌𝟏 = {𝒕𝟏, 𝒕𝟐, 𝒕𝟑, … 𝒕𝒌𝟏}. 𝒏𝟏 

number of VMs indicated as 𝒗𝒏𝟏 = {𝒗𝟏, 𝒗𝟐, 𝒗𝟑 … 𝒗𝒏𝟏}, 𝒊𝟏 

number of physical machines  indicated as 𝑷𝑴𝒊 =
{𝑷𝑴𝟏, 𝑷𝑴𝟐, 𝑷𝑴𝟑 … 𝑷𝑴𝒊𝟏}, 𝒋𝟏  number of datacenters 

indicated as  𝑫𝑪𝒋𝟏 = {𝑫𝑪𝟏, 𝑫𝑪𝟐, 𝑫𝑪𝟑, … . 𝑫𝑪𝒋𝟏}.In this 

research, we formulated problem statement as  𝒕𝒌 tasks 

should be mapped to 𝒗𝒏 VMs which resided in 𝑷𝑴𝒊 physical 

machines which placed in 𝑫𝑪𝒋 datacenters and assumed it as 

a multi cloud environment while minimizing makespan, 

resource cost, improves resource utilization. The below 

Fig.1. indicates proposed system architecture of 

MOPTSA3C. Initially, various tasks are generated from 

heterogeneous resources and coming to cloud application 

console. These tasks are captured by brokers on behalf of 

CSP which is a software agent employed in cloud 

architecture. Brokers will submit all these tasks to task 

manager. We have induced a process in task manager to 

calculate priorities of tasks based on size of tasks and to 

which VM it need to be assigned. Therefore, VM priorities 

also to be calculated based on unit electricity cost of VMs. 

These two priorities are fed together to MOPTSA3C which 

is a Deep Reinforcement learning based scheduler captures 

these priorities and generates schedules according to 

resources available in multiple cloud environments. In this 

approach, if one task arrived at scheduler with certain 

priority i.e. if it is highest priority it should be mapped to a 

VM which is having highest priority i.e. VM with low 

electricity cost at respective datacenter in multi cloud 

environment. Initially scheduler looks for prioritized VM 

availability at the datacenter and if it is not available it looks 

for the same prioritized VM in datacenter in other  cloud 

environment and it also looks for the pricing of the services 

requested by the user in both cloud environments and 

migrates tasks wherever the resource cost is less. If there is a 

case that if none of the datacenters are available with 

required prioritized VM then scheduler will assign a VM 

with next priority in the cloud model with least cost 

pertaining to that service. While scheduling tasks according 

to the procedure adapted by MOPTSA3C we are addressing 

parameters makespan, resource utilization and resource 

costs. The below Table II indicates all notations we have 

used in mathematical modeling. 
TABLE II 

NOTATIONS USED IN MATHEMATICAL MODELING OF MOPTSA3C 

Notation Meaning 

𝑤𝑙𝑛1
𝑣

 Current Workload running on 𝑛1 

VMs 

𝑤𝑙𝑖1
𝑃𝑀

 Current Workload running on 𝑖1 

Physical Machines 

𝑝𝑟𝑐𝑎𝑛1
𝑣

 processing capacity of 𝑛1 VMs 

𝑡𝑜𝑡𝑝𝑟𝑐𝑎𝑛1
𝑣  Total  capacity of all 𝑛1 VMs 

𝑡𝑘1
𝑙

 size of 𝑘1 Tasks 

tk1
pri

 
Task Priorities of all 𝑘1 tasks 

𝑣𝑛1
𝑝𝑟𝑖

 VM Priorities of all 𝑛1 VMs 

𝑚𝑝𝑘1 Makespan of 𝑘1 Tasks. 

 

𝑒𝑥𝑡𝑘1
 Execution time of  1 Tasks. 

𝑓𝑖𝑛𝑖𝑡𝑖𝑚𝑒
𝑡𝑘1  Finish time of 𝑘1 Tasks. 

𝑑𝑙𝑡𝑘1
 Deadline constraint of 𝑘1 Tasks. 

𝑅𝑒𝑐𝑜𝑠𝑡  Resource cost in multiple Cloud 

environments. 

𝑙𝑜𝑎𝑑𝑐𝑝𝑢𝑖1
 Load on CPU on considered 𝑖1 

Physical Machines 
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FIGURE 1. System Architecture for MOPTSA3C 

In this mathematical modeling, we assumed all these 

resources are in multiple cloud environments. Initially in this 

mathematical modeling, to calculate priorities of tasks, it is 

important to know how much workload currently being run 

on the VMs. Therefore, current workload on VMs in multiple 

cloud environments to be calculated  using below 

equation(1). 

𝒘𝒍𝒏𝟏
𝒗 =  ∑ 𝒘𝒍𝒏𝟏     (1) 

After calculation of current running load on VMs, as these 

VMs are placed in Physical machines. Therefore, we also 

need to calculate current running workload on physical 

machines in all considered 𝒊𝟏 physical machines in multiple 

cloud environments. It is calculated using below equation(2). 

𝒘𝒍𝒊𝟏
𝑷𝑴 =

𝒘𝒍𝒏𝟏
𝒗

𝑷𝑴𝒊𝟏
     (2) 

It is necessary to know about processing capacities of VMs 

considered in different multiple cloud environments as 

priorities of tasks will be depends on VM capacities and it is 

calculated using equation(3). 

𝒑𝒓𝒄𝒂𝒏𝟏
𝒗 = 𝒑𝒓𝒏𝒐 ∗ 𝒑𝒓𝒎𝒊𝒑𝒔    (3) 

After calculating each capacity of a VM, total processing 

capacities of 𝒏𝟏 VMs considered in multiple cloud 

environments calculated using equation(4). 

𝒕𝒐𝒕𝒑𝒓𝒄𝒂𝒏𝟏
𝒗 = ∑ 𝒑𝒓𝒄𝒂𝒏𝟏

𝒗     (4) 

In our research, it is important to calculate priorities of tasks 

as we choose a specific VM for prioritized tasks. To evaluate 

priority, we need to know the size of tasks coming to cloud 

application console. It is evaluated using equation(5). 

𝒕𝒌𝟏
𝒍 = 𝒕𝒎𝒊𝒑𝒔

𝒍 ∗ 𝒕𝒌𝟏
𝒑𝒓

                   

(5) 

After calculation of size of tasks from eqn.5. priorities of 

tasks are calculated using equation(6). 

𝒕𝒌𝟏
𝒑𝒓𝒊

=
𝒕𝒌𝟏

𝒍

𝒑𝒓𝒄𝒂𝒏𝟏
𝒗      (6) 

In our research, we are calculating priorities of VMs based 

on unit electricity cost which helps scheduler for the efficient 

mapping of tasks to VMs. It is calculated using below 

equation(7). 

𝒗𝒏𝟏
𝒑𝒓𝒊

 =
(𝒆𝒍𝒉𝒊𝒈𝒉

𝒄𝒐𝒔𝒕

𝑫𝑪𝒋𝟏 
)∗𝒍𝒐𝒂𝒅𝒄𝒑𝒖𝒊𝟏

𝒆𝒍𝑫𝑪𝒋𝟏
𝒄𝒐𝒔𝒕     (7) 

From equation (6) we calculated priorities of tasks, 

equation(7) gives priorities of  VMs using electricity cost at 

datacenters. These both priorities are fed to MOPTSA3C 

scheduler by task manager to generate schedules for 

incoming tasks. Our scheduler generates schedules with 

consideration of priorities by using A3C while minimization 

of parameters makespan, resource cost, utilization of 

resources. Before calculation of makespan, we are interested 

in identifying execution time of tasks as makespan depends 

on execution time. Execution time of tasks calculated using 

equation(8). 

𝒆𝒙𝒕𝒌𝟏
=

𝒆𝒙𝒕

𝒑𝒓𝒄𝒂𝒏𝟏
𝒗      (8) 

Every task will have finish time and we have posed a 

deadline constraint in our work through which every task 

should complete its execution before the deadline is 

completed. Therefore, finish time of a task always should be 

less than deadline. Initially, finish time of 𝒌𝟏 tasks are 

calculated using equation(9). We have mentioned that finish 

time should always be less than deadline of considered 𝒌𝟏 

tasks and it is mentioned in equation(10). 

𝒇𝒊𝒏𝒊𝒕𝒊𝒎𝒆
𝒕𝒌𝟏 =  ∑ 𝒗𝒏𝟏 + 𝒆𝒙𝒕𝒌𝟏

   

 (9)  

𝒇𝒊𝒏𝒊𝒕𝒊𝒎𝒆
𝒕𝒌𝟏 < 𝒅𝒍𝒕𝒌𝟏

     (10) 

After mathematical formulation of task, VM priorities 

makespan is formulated in the equation(11). Makespan is a 

primary concern of any task scheduler as it depends on 

execution time of all considered tasks. If value of makespan 

increases, it effects performance of task scheduler directly. 

Therefore it is considered as one of the parameter to be 

addressed in our research. It is calculated using equation(11). 

𝒎𝒑𝒌𝟏 = 𝒎𝒊𝒏(𝒇𝒊𝒏𝒊𝒕𝒊𝒎𝒆
𝒕𝒌𝟏 )    (11) 

𝒎𝒊𝒏 𝒇𝒊𝒏𝒊𝒕𝒊𝒎𝒆
𝒕𝒌𝟏𝒗𝒏𝟏 =  ∑ 𝒊,𝒋(𝒇𝒊𝒏𝒊𝒕𝒊𝒎𝒆

𝒕𝒌𝟏𝒗𝒏𝟏)𝒌𝟏,𝒏𝟏 
𝒊=𝟏,𝒋=𝟏   (12) 

In equation(12), where, 𝒊,𝒋 is a parameter which indicates 

when a task 𝒕𝒌𝟏 is assigned to a VM  𝒗𝒏𝟏 and it will be set to 

1 otherwise it will be set to 0. After formulation of makespan, 

next parameter we considered is resource cost. The main 

reason to choose resource cost as a parameter is most of the 

cloud users facing issues with high resource cost which 

incurs high billing for the services consumed by cloud user. 

This is mainly due to the inefficient mapping of tasks/jobs 

requested by user in the cloud environment. To tackle this 

and to get benefit for both customer and CSP, we formulated 

a prioritized task mapping procedure which maps high 

prioritized tasks to a high prioritized VM by checking 

availability of that resource availability in multiple cloud 

environments where the resource cost is low. If that 

corresponding resource is not available and then it can be 
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assigned to the next prioritized resource in cloud 

environment where the resource cost is less. It is calculated 

using below equation(13). 

𝑹𝒆𝒄𝒐𝒔𝒕 =  ∑
𝒓𝒖𝒏𝒏𝒊𝒏𝒈 𝒄𝒐𝒔𝒕 𝒐𝒇 𝒕𝒌𝟏∗𝒎𝒆𝒎𝒐𝒓𝒚 𝒇𝒐𝒓 𝒕𝒌𝟏

𝒗𝒏𝟏∗𝑷𝑴𝒊𝟏

𝒗𝒏𝟏
𝒏𝟏=𝟏  (13) 

After evaluating resource cost carefully, we are interested in 

evaluating utilization of resources in the cloud environment 

as if tasks are suitably mapped to an efficient VM then 

makespan is minimized which also effects parameters 

resource cost, utilization of resources in cloud paradigm. 

This motivates us to formulate utilization of resources using 

equation(14). Resources in cloud are of two types i.e. CPU, 

I/O and bandwidth. In this research, we are focussed on load 

of CPU in considered 𝒊𝟏Physical machines in cloud 

environment. Therefore, load on CPU in 𝒊𝟏physical 

machines are calculated using below equation(14). 

𝒍𝒐𝒂𝒅𝒄𝒑𝒖𝒊𝟏
=  ∑

𝒖𝒔𝒂𝒈𝒆(𝒌𝟏)

𝒄𝒑𝒖𝒊𝟏

𝒔
𝒌𝟏=𝟏     (14) 

Where, 𝒔 indicates number of active tasks on a Physical 

machine. 𝒄𝒑𝒖𝒊𝟏
is the capacity of 𝒄𝒑𝒖, 𝒖𝒔𝒂𝒈𝒆(𝒌𝟏) is the 

usage of 𝒄𝒑𝒖𝒊𝟏
of 𝒊𝟏physical machine. Reliability of the 

scheduler depends on decrease in number of faults. 

Generally, in any cloud model, there may be a chance to 

occur short term faults like system crash, bugs in software. 

These are common faults occurred in system. Probability of 

occurrence for transient failures is likely to be followed by 

Poisson distribution. We haven’t focused on transient faults 

memory, network interfaces in this research. we have 

concentrated mainly on fault rate(𝝉) which depends on 

computing node operational frequency 𝒇𝒓𝒆𝒒𝒐𝒑. The relation 

between operational frequency and fault rate is given in 

equation (15). 

𝝉(𝒇𝒓𝒆𝒒𝒐𝒑) = 𝝉𝒐. 𝑭(𝒇𝒓𝒆𝒒𝒐𝒑) = 𝝉𝒐. 𝟏𝟎

𝒅(𝟏−𝒇𝒓𝒆𝒒𝒐𝒑)

𝟏−𝒇𝒓𝒆𝒒𝒐𝒑𝒎𝒊𝒏    (15) 

Where 𝒇𝒓𝒆𝒒𝒐𝒑 indicates operational frequency, 𝝉𝒐 is initial 

fault rate, 𝑭(𝒇𝒓𝒆𝒒𝒐𝒑) is a decreasing function, where 𝒅 > 𝟎 

is constant. Reliability of the system is defined in equation 

(16) 

𝑹𝒆𝒕𝒌𝟏
(𝒇𝒓𝒆𝒒𝒐𝒑) = 𝒆−𝝉(𝒇𝒓𝒆𝒒𝒐𝒑).𝒆𝒙𝒕𝒌𝟏/𝒇𝒓𝒆𝒒𝒐𝒑 (16) 

IV. METHODOLOGY USED IN PROPOSED MOPTSA3C  

This section discusses methodology used in proposed 

MOPTSA3C which is a reinforcement learning approach i.e. 

improved Asynchronous Advantage Actor Critic (A3C) 

algorithm . It  is composed with two components i.e. Actor 

network  which is used to map your incoming state of tasks 

to action space where tasks need to be mapped and executed  

whereas on the other hand critic network evaluates  action 

which is  performed  by actor network. It is an asynchronous 

approach in which each actor network evaluated parallelly 

on different threads and each thread after completion of 

running it  evaluates loss in actor network and interacts with  

global network by accumulating gradients. In this research  

an improved A3C approach used  because conventional  A3C 

suffers  with learning  features in  a dynamic policy based 

complex environments. Therefore,   improved A3C which 

uses  residual convolutional neural network which can 

helpful to  draw complex relationship between set of tasks 

and   hosts which  improves acceleration  of training  to make 

appropriate decisions in scheduling environment. In this  

approach, initially all the data which is two dimensional 

folded is to be fed  to actor critic network and it is flattened 

as  one dimensional form and in turn  which should be passed 

to hidden layer which is fully connected and  hidden  layer 

neurons are set to 256, kernel size is set to 2, step size is set 

as 1 .All the data passed through hidden layers and output of 

that network is connected to a SoftMax activation function 

to keep the  range of values are between 0,1. In Asynchrous 

advantage actor  critic each  of  the agent runs with different 

threads as it is a multi-threading  network where each agent 

employs a thread independently and based on the outcome 

evaluated at each node subsequently submits outcome to a 

global network which gives the reward. When multi thread 

agents are running in parallel, training speed of algorithm 

improves as  data given  as state space into every actor 

network. In our research,  for scheduling interval at time 𝑻 is 

represented as 𝒊𝑻,  state space  is represented as 𝒔𝑻, action 

space is represented as 𝒂𝑻.  Next sequence of state space is 

represented as 𝒔𝑻+𝟏 , after evaluation of  input state 

sequences on it generates  a reward which is represented as 

𝑹𝒆𝒘𝑻. The reward function should give either it give 

positive or negative results. Therefore, a policy   should  

observe the results and guide it and adjust the reward to be 

maximized.  The reward should be maximized and learned 

on its own by repetitive process of iterations  in the model. It 

should be expressed as < 𝒔, 𝒂, , 𝐑𝐞𝐰, 𝒗𝒂𝒍𝒇𝒏 >. 

A. STATE SPACE 

In the above tuple  𝒔 represents state space  which consists 

of set of states named as 𝒔 = {𝒔𝟏, 𝒔𝟐, … 𝒔𝑻}which consists of 

different tasks . Assume 𝒔𝒕𝒂𝒕𝑻 = {(𝒇𝒕𝒊𝒏𝑷𝑴𝒊𝟏

𝑻 , 𝒇𝒕𝒊𝒏𝒕𝒌𝟏
𝑻 } in 

which 𝒇𝒕𝒊𝒏𝑷𝑴𝒊𝟏

𝑻  indicates feature information of Physical 

hosts . It is represented as a matrix.   𝒇𝒕𝒊𝒏𝒕𝒌𝟏
𝑻  indicates feature 

information of  tasks computed on physical machines which 

is also represented as a matrix.   

B. ACTION SPACE 

In the action space, we represent all the actions to be done 

for all the possible states which map tasks to the concerned 

virtual resources. It is represented as 𝒂 = {𝒂𝟎, 𝒂𝟏, 𝒂𝟐 … 𝒂𝑻}. 

In 𝒂𝑻 = {𝒅𝒊𝒋} where 𝒅𝒊𝒋 is mapping action or decision 

variable in time interval 𝑻. Entire task mapping process 

depends on decision variable. 
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C. POLICY 

In the improved a3c approach, the policy  have to control 

the results obtained from reward function to adjust the result 

in maximum optimized manner. It is represented using 

(𝒂𝑻|𝒔𝑻) [66]. This is characterized as policy function by 

neural network which is represented as (𝒂𝑻|𝒔𝑻; £𝒂).  

D. REWARD FUNCTION 

This reward function is most important aspect in this 

reinforcement learning approach as it will give the outcome 

of mapping of tasks. It is indicated as 𝑹𝒆𝒘𝑻(𝒔𝑻, 𝒂𝑻). It 

should be calculated using equation(17). 

𝑹𝒆𝒘𝑻 = 𝒎𝒊𝒏(𝒎𝒑𝒌𝟏, 𝑹𝒆𝒄𝒐𝒔𝒕) , 𝒎𝒂𝒙 (𝒍𝒐𝒂𝒅𝒄𝒑𝒖𝒊𝟏
) (17) 

Reward function should give an outcome and if reward is 

negative then it need to give cumulative discount reward and 

indicated as 𝒈𝑻. It is calculated using equation (18). 

𝒈𝑻 = 𝑹𝒆𝒘𝑻+𝟏 + ¥. 𝑹𝒆𝒘𝑻+𝟐 + ⋯ + ¥𝒕−𝑻−𝟏. 𝑹𝒆𝒘𝑻 (18) 

E. VALUE FUNCTION 

 Value function represents expectation of state and action 

sequences performed by action, state spaces. State value 

function is represented as 𝑽(𝒔𝑻) and it is calculated using 

equation(19). State-action value function is indicated as 

𝒒(𝒔𝑻, 𝒂𝑻) and it is calculated using equation(20). 

Expectation from these two functions is indicated using 

𝒆𝒙𝒑𝒆𝒄𝒕{}. 

 𝑽(𝒔𝑻) = 𝒆𝒙𝒑𝒆𝒄𝒕[𝑹𝒆𝒘𝑻 + ¥. 𝑹𝒆𝒘𝑻+𝟏 +

¥𝒕−𝑻−𝟏. 𝑹𝒆𝒘𝒕|𝒔𝑻]    

 (19) 

𝒒(𝒔𝑻, 𝒂𝑻) = 𝒆𝒙𝒑𝒆𝒄𝒕[𝒈𝑻|𝒔𝑻, 𝒂𝑻] = 𝒆𝒙𝒑𝒆𝒄𝒕[𝑹𝒆𝒘𝑻 +

¥. 𝒒(𝒔𝑻+𝟏, 𝒂𝑻+𝟏) + ⋯ + |𝒔𝑻, 𝒂𝑻]   (20) 

Value function can also be calculated using neural network 

with the help of network parameter 𝜽𝒃.It is calculated using 

equation(21). 

𝑽(𝒔𝑻) ≈ 𝑽(𝒔𝑻; 𝜽𝒃), 𝒒(𝒔𝑻, 𝒂𝑻) ≈ 𝒒(𝒔𝑻, 𝒂𝑻;  𝜽𝒃) (21) 

F. TRAINING NETWORK 

   In this improved A3C approach, all threads runs 

simultaneously which consists of different agents and 

updates their decisions to global network. This process 

continuous until all iterations are completed and returns 

maximum reward value. Initially agents in multiple thread 

networks run with their sample data and observe the rewards 

and cumulative gradient will be collected and submitted to 

global network which checks the expected and actual values 

and guides each agent in runs in different threads to take a 

good decision for scheduling process. In the training process, 

for every iteration policy function to be given to the thread 

as (𝒂𝑻|𝒔𝑻; £𝒂~), and value function as 𝒒(𝒔𝑻, 𝒂𝑻;  𝜽𝒃~). £𝒂~  

and 𝜽𝒃~ are control parameters in network and after every 

iteration for state 𝒔𝑻, an action to be done with 𝒂𝑻 and a 

reward should be generated as 𝑹𝒆𝒘𝑻 which should be 

maximum. For every iteration, if the same policy function if 

applied there may be a chance of getting different gradient 

values. Therefore, gradient ascent method is used to get 

cumulative gradient and it is calculated using equation(22).  

𝜵£𝒂~ 𝒆𝒙𝒑𝒆𝒄𝒕[𝒈𝑻] = 𝜵£𝒂~ 𝒍𝒐𝒈( 𝒂𝑻|𝒔𝑻; £𝒂~)𝒈𝑻 (22) 

After calculation of cumulative gradient using gradient 

ascent, there may be a chance that more action causes 

increase in gradient value. For every iteration, the probability 

of gradient value should be greater than equal to zero. 

Increase in gradient value slow down the learning rate. It 

should guide actor network to make optimized schedules but 

not to slow down the learning process. This is the reason 

A3C uses advantage function which is indicated as 

𝒂𝒅𝒗(𝒔𝑻, 𝒂𝑻) improves calculation of gradient by subtracting 

from baseline function 𝒃𝒂𝒔𝒆(𝒕). It helps algorithm to 

maintain unbiasedness in the process and helps it to converge 

in an efficient manner. It is calculated using equation(23). 

𝒅£𝒂 =  𝒅£𝒂 + 𝜵£𝒂~ 𝒍𝒐𝒈 𝒍𝒐𝒈( 𝒂𝑻|𝒔𝑻; £𝒂~)𝒂𝒅𝒗(𝒔𝑻, 𝒂𝑻) 

 =𝒅£𝒂 +
𝜵£𝒂~ 𝒍𝒐𝒈 𝒍𝒐𝒈( 𝒂𝑻|𝒔𝑻; £𝒂~)(𝒒(𝒔𝑻, 𝒂𝑻; 𝜽𝒃~) −

𝑽(𝒔𝑻; 𝜽𝒃~))     

 (23) 

In the process for every agent at state 𝒔𝑻, calculates reward 

with 𝑹𝒆𝒘𝑻 and value function is calculated as  𝑽(𝒔𝑻; 𝜽𝒃~), 

for the next state 𝒔𝑻+𝟏, value function is updated as 

𝑽(𝒔𝑻+𝟏; 𝜽𝒃~). 

𝑽(𝒔𝑻; 𝜽𝒃~) =  𝑽(𝒔𝑻; 𝜽𝒃~) + 𝜷(𝑹𝒆𝒘𝑻 + ¥. 𝑽(𝒔𝑻+𝟏; 𝜽𝒃~) −
𝑽(𝒔𝑻; 𝜽𝒃~))       (24) 

After calculation of value function updated for every 

iteration temporal check point error  is calculated using 

eqn.23. 

𝒅𝜽𝒃 =
𝜹[𝑹𝒆𝒘𝑻+¥𝑽(𝒔𝑻+𝟏;𝜽𝒃~)− 𝑽(𝒔𝑻;𝜽𝒃~)]𝟐

𝜹𝜽𝒃~
  (25) 

G. UPDATING PARAMETERS 

This process have to be repeated by collecting data and map 

the tasks to suitable VMs by using  improved A3C and to get 

maximum reward. After  collecting all the gradients , it need 

to be submitted to global network by updating parameters. It 

is calculated using equation(26). 
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£𝒂 = £𝒂 + 𝜷. 𝒅£𝒂, 𝜽𝒃 =  𝜽𝒃 + 𝜶 𝒅𝜽𝒃  (26) 
H. PROPOSED MULTI OBJECTIVE PRIORITIZED 

TASK SCHEDULER BY USING IMPROVED A3C 

Input: Number of considered tasks 𝒕𝒌𝟏 =
{𝒕𝟏, 𝒕𝟐, 𝒕𝟑, … 𝒕𝒌𝟏},Number of Considered VMs 

𝒗𝒏𝟏 = {𝒗𝟏, 𝒗𝟐, 𝒗𝟑 … 𝒗𝒏𝟏}, Number of Physical 

machines{𝑷𝑴𝟏, 𝑷𝑴𝟐, 𝑷𝑴𝟑 … 𝑷𝑴𝒊𝟏},Number of  

considered Datacenters 𝑫𝑪𝒋𝟏 =

{𝑫𝑪𝟏, 𝑫𝑪𝟐, 𝑫𝑪𝟑, … . 𝑫𝑪𝒋𝟏}, £𝒂, 𝜽𝒃, £𝒂~ , 𝜽𝒃~ , 𝑻, 𝒕 

Output: Scheduling decision µ∗(𝒂𝑻|𝒔𝑻; £𝒂) 

 Initialize £𝒂, 𝜽𝒃, 𝒕 and set 𝒕 ← 𝟏. 
 Initialize £𝒂~ , 𝜽𝒃~ . 

 Calculate 𝒕𝒌𝟏
𝒑𝒓𝒊

 using eqn.6. 

 Calculate 𝒗𝒏𝟏
𝒑𝒓𝒊

 using eqn.7. 

 repeat  

 set gradient values 𝒅£𝒂 ← 𝟎, 𝒅𝜽𝒃 ← 𝟎 
 set network specific parameters as £𝒂~ ←
 £𝒂, 𝜽𝒃~ ← 𝜽𝒃. 

 𝑻𝒔𝒕𝒓𝒕 = 𝑻 

 repeat 

input status information to state space as 𝒔𝑻, 

action space 𝒂𝑻. Apply policy µ(𝒂𝑻|𝒔𝑻; £𝒂~) 

Get reward as 𝑹𝒆𝒘𝑻 and move to next state 𝒔𝑻+𝟏  

Increment global shared counter, step counter. 

until  𝒕 − 𝒕𝒔𝒕𝒓𝒕 == 𝒕𝒎𝒂𝒙 or 𝒕 == 𝒕𝒆𝒏𝒅 

Evaluate value function  𝑽(𝒔𝑻) using eqn.19. 

for 𝒊 = 𝒕 − 𝟏 , … , 𝒕𝒔𝒕𝒓𝒕 do 

calculate value function using eqn.24. 

calculate 𝒅𝜽𝒃 using eqn.25. 

calculate 𝒅£𝒂 using eqn.23. 

check the parameters 𝒎𝒑𝒌𝟏, 𝑹𝒆𝒄𝒐𝒔𝒕, 𝒍𝒐𝒂𝒅𝒄𝒑𝒖𝒊𝟏
 

end for 

update £𝒂by 𝒅£𝒂,  𝜽𝒃 by 𝒅𝜽𝒃. 

until 𝑻 > 𝑻𝒎𝒂𝒙 

return µ∗(𝒂𝑻|𝒔𝑻; £𝒂) 

The below Fig.2. indicates flow of proposed MOPTSA3C. 

Initially, it starts with initialization of Global network and 

network specific actor-critic parameters. After initialization, 

priorities of task, VMs are evaluated using eqns.6,7. Input 

state space, action space values, apply the policy and observe 

the reward using value function using eqn.17. After 

observing reward, check how far the values of parameters are 

optimized and if they produce scheduling decisions 

according to the expectation in training update them as best 

optimized values and update global and local network 

parameters. If not calculate the accumulated or cumulative 

gradient value and suggest the better scheduling decision to 

the policy function we used in the approach. Repeat this 

process until all the iterations are completed. 

 
V. SIMULATION AND RESULTS  

This section discusses about Simulation and results of 

proposed MOPTSA3C(Multi Objective Prioritized Task 

scheduler using improved A3C)  algorithm. Entire 

simulation of the proposed approach using Cloudsim toolkit. 

This proposed approach uses various data distributions of 

fabricated datasets represented as u01, n02, l03, r04 i.e. 

uniform, normal, left, right skewed distributions and realtime 

supercomputing worklogs which are represented as h05 for 

HPC2N , na06 for NASA respectively. Subsection A 

discusses Simulation and configuration settings, Subsection 

B discusses calculation of makespan using MOPTSA3C, 

Subsection C discusses calculation of Resource cost using 

MOPTSA3C, Subsection D discusses calculation of 

Resource utilization using MOPTSA3C, Subsection E 

discusses calculation of Reliability using MOPTSA3C, 

Subsection F  discusses Analysis of results and discussion. 

Entire simulation ran for 100 iterations. Finally proposed 

approach evaluated over existing approaches DQN, 

MOABCQ, A2C algorithms for evaluating parameters 

makespan, resource cost, resource utilization.  
A. SIMULATION SETTINGS USED IN MOPTSA3C 

The below subsection discusses simulation and 

configuration settings used in proposed MOPTSA3C. This 

below Table III indicates simulation settings used in our 

simulation. 

TABLE III 

CONFIGURATION  SETTINGS FOR SIMULATION 

Entity Quantity 

Tasks 1000 

VMs 100 

Tasks length 900,000 

Memory of PM 64GB 

PM Bandwidth 1200 MBPS 

Memory of VM 4 GB 

Storage of PM 4TB 

Storage  of VM 64GB 

VM Bandwidth 10 MBPS 

PM Operating 

System 

MAC 

Datacenters 70 
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FIGURE 2. Flow of MOPTSA3C algorithm 

 

The MOPTSA3C algorithm's total time complexity 

encompasses several components: first, the task priority 

calculation with a complexity of O(k1 log k1) for k1 tasks. 

Second, the computation of VM priorities among n1 VMs, 

taking O(n1 log n1) time. Third, establishing the mapping 

between k1 tasks and prioritized VMs, which demands 

O(k1 * n1) due to reward calculation. Finally, executing 

k1 tasks incurs a complexity of O(k1). In the context of 

the MOPTSA3C algorithm, the dominating factor for the 

total time complexity emerges from the mapping step 

(O(k1 * n1)), which significantly influences the 

algorithm's computational load. Consequently, while 

individual operations like task and VM priority 

calculations (O(k1 log k1) and O(n1 log n1) respectively) 

and task execution (O(k1)) are relevant, the algorithm's 

overall complexity predominantly aligns with the 

mapping process, specifically due to its dependence on 

both the number of tasks and virtual machines. 
 

The below Table IV indicates parameter settings for 

MOPTSA3C which is used for training. 
TABLE IV 

PARAMETER  SETTINGS FOR MOPTSA3C 

Name Value 

Rate of Learning  (𝛽) 0.00001 

Rate of Learning(𝛼) 0.001  

Decay factor(¥)  0.8 

Activation Functions SoftMax, RELU 

Number of Threads 15 

Global Shared counter 

𝑇𝑚𝑎𝑥 

2200 

Local Thread Counter 

𝑡𝑙𝑜𝑐𝑎𝑙 

220 

 

B. MAKESPAN EVALUATION BY MOPTSA3C 

This subsection discusses evaluation of makespan for 

MOPTSA3C. The reason to evaluate makespan is that it 

directly affect scheduling process in cloud paradigm. An 

inefficient task scheduler increases makespan and thereby 

effects QoS of cloud service provider. This motivates us to 

evaluate makespan of MOPTSA3C scheduler in multi cloud 

environment by using different statistical distributions and 

realtime worklogs. The below Fig.3 and Table V represents 

evaluated makespan for MOPTSA3C using uniform 

distribution. 

TABLE V 
EVALUATION OF MAKESPAN USING UNIFORM DISTRIBUTION 

Tasks(u01)  DQN MOABCQ A2C MOPTSA3C 

100 735.21 802.66 712.08 688.18 

500 828.57 836.75 809.26 709.27 

1000 912.35 926.77 887.12 723.38 

   

 

FIGURE 3. Evaluation of Makespan using u01 

 

Initially our proposed MOPTSA3C evaluated over baseline 

approaches DQN, MOABCQ, A2C algorithms to check 

efficacy of  MOPTSA3C in  view of makespan.   We 

considered 100-1000 tasks for evaluating makespan with 

fabricated uniform distribution  of tasks(u01). Generated 

makespan for DQN for 100,500, 1000 tasks is 735.21, 

828.57, 912.35 respectively. Generated makespan for 

MOABCQ  with 100,500, 1000 tasks is  802.66, 836.75, 

926.77 respectively. Makespan generated for A2C with 

100,500,1000 tasks is 712.08, 809.26, 887.12 respectively. 

Makespan generated for MOPTSA3C with 100,500,1000 

tasks is 688.18, 709.27, 723.38 respectively. From the above 

Fig.3 and Table V it is clearly shown that when tasks are 

increased from 100 to 1000 still MOPTSA3C learns the 

policies posed in scheduler and outperforms all existing 

approaches by minimizing makespan for uniform 

distribution of tasks.  
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FIGURE 4. Evaluation of Makespan using n02 

 
TABLE VI 

EVALUATION OF MAKESPAN USING NORMAL DISTRIBUTION 

Tasks(n02)  DQN MOABCQ A2C MOPTSA3C 

100 935.78 912.67 824.18 705.26 

500 1326.77 1245.71 1408.36 832.11 

1000 1524.17 1609.87 1527.15 1096.36 

 

The above Table  VI and Fig. 4 indicates evaluated makespan 

using normal distribution. Generated makespan for DQN for 

100,500, 1000 tasks is 935.78, 1326.77, 1524.17 

respectively. Generated makespan for MOABCQ  with 

100,500, 1000 tasks is  912.67, 1245.71, 1609.87 

respectively. Makespan generated for A2C with 

100,500,1000 tasks is 824.18, 1408.36, 1527.15 

respectively. Makespan generated for MOPTSA3C with 

100,500,1000 tasks is 705.26, 832.11, 1096.36 respectively. 

From the above Figure 4 and Table VI it is clearly shown that 

when tasks are increased from 100 to 1000 still MOPTSA3C 

learns the policies posed in scheduler and outperforms all 

existing approaches by minimizing makespan for Normal 

distribution of tasks.  

 

FIGURE 5. Evaluation of Makespan using l03 

 

TABLE VII 

EVALUATION OF MAKESPAN USING LEFT SKEWED DISTRIBUTION 

Tasks(l03) DQN MOABCQ A2C MOPTSA3C 

100 824.56 736.06 718.66 678.19 

500 978.16 1343.22 1098.43 725.32 

1000 1413.22 1487.35 1267.18  1104.36 

 

The above Table  VII and Fig. 5 indicates evaluated 

makespan using left skewed distribution. Generated 

makespan for DQN for 100,500, 1000 tasks is 824.56, 

978.16, 1413.22 respectively. Generated makespan for 

MOABCQ  with 100,500, 1000 tasks is  736.06, 1343.22, 

1487.35 respectively. Makespan generated for A2C with 

100,500,1000 tasks is 718.66, 1098.43, 1267.18 

respectively. Makespan generated for MOPTSA3C with 

100,500,1000 tasks is 678.19, 725.32, 1104.36 respectively. 

From the above Figure 5 and Table VII it is clearly shown 

that when tasks are increased from 100 to 1000 still 

MOPTSA3C learns the policies posed in scheduler and 

outperforms all existing approaches by minimizing 

makespan for left skewed distribution of tasks.  

 

 

FIGURE 6. Evaluation of Makespan using r04 

 
TABLE VIII 

EVALUATION OF MAKESPAN USING RIGHT SKEWED DISTRIBUTION 

Tasks(r04) DQN MOABCQ A2C MOPTSA3C 

100 643.39 728.34 638.18 544.38 

500 757.68 851.18 732.07 612.21 

1000 1426.18 1538.17 1387.19 1146.09 

Generated makespan for DQN for 100,500, 1000 tasks is 

643.39, 757.68, 1426.18 respectively. Generated makespan 

for MOABCQ  with 100,500, 1000 tasks is  728.34, 851.18, 

1538.17 respectively. Makespan generated for A2C with 

100,500,1000 tasks is 638.18, 732.07, 1387.19 respectively. 

Makespan generated for MOPTSA3C with 100,500,1000 

tasks is 544.38, 612.21, 1146.09 respectively. From the 

above Fig.6 and Table VIII it is clearly shown that when 

tasks are increased from 100 to 1000 still MOPTSA3C learns 

the policies posed in scheduler and outperforms all existing 

approaches by minimizing makespan for right skewed 

distribution of tasks. 
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FIGURE 7. Evaluation of Makespan using h05 

 
TABLE IX 

EVALUATION OF MAKESPAN USING HPC2N WORKLOGS 

Tasks(h05) DQN MOABCQ A2C MOPTSA3C 

100 1464.73 1567.21 1372.17 989.45 

500 1762.18 2732.44 1983.45 1357.81 

1000 2542.17 3531.19 2372.09 1678.19 

Generated makespan for DQN for 100,500, 1000 tasks is 

1464.73, 1762.18, 2542.17 respectively. Generated 

makespan for MOABCQ  with 100,500, 1000 tasks is  

1567.21, 2732.44, 3531.19 respectively. Makespan 

generated for A2C with 100,500,1000 tasks is 1372.17, 

1983.45, 2372.09 respectively. Makespan generated for 

MOPTSA3C with 100,500,1000 tasks is 989.45, 1357.81, 

1678.19 respectively. From the above Fig.7 and Table IX it 

is clearly shown that when tasks are increased from 100 to 

1000 still MOPTSA3C learns the policies posed in scheduler 

and outperforms all existing approaches by minimizing 

makespan for HPC2N worklogs. 

 

FIGURE 8. Evaluation of Makespan using na06 

TABLE X 
EVALUATION OF MAKESPAN USING NASA WORKLOGS 

Tasks(na06) DQN MOABCQ A2C MOPTSA3C 

100 924.14 853.07 765.64 627.09 
500 1089.26 1107.26 1082.15 876.33 

1000 1437.58 1756.93 1643.62 1347.22 

Generated makespan for DQN for 100,500, 1000 tasks is 

924.14, 1089.26, 1437.58 respectively. Generated makespan 

for MOABCQ  with 100,500, 1000 tasks is  853.07, 1107.26, 

1756.93 respectively. Makespan generated for A2C with 

100,500,1000 tasks is 765.64, 1082.15, 1643.62 

respectively. Makespan generated for MOPTSA3C with 

100,500,1000 tasks is 627.09, 876.33, 1347.22 respectively. 

From the above Fig.8 and Table X it is clearly shown that 

when tasks are increased from 100 to 1000 still MOPTSA3C 

learns the policies posed in scheduler and outperforms all 

existing approaches by minimizing makespan for NASA  

worklogs. 
C. RESOURCE COST EVALUATION BY 

MOPTSA3C 

This subsection discusses clearly about evaluation of 

Resource cost using our proposed MOPTSA3C.  The reason 

for evaluating resource cost in scheduling in multi cloud 

environment is an effective scheduler chooses precise VM to 

generate optimize schedules while effecting resource cost. 

Ineffective scheduling leads to increase in resource cost 

which causes a burden to CSP and as well as to cloud users. 

This motivates us to evaluate resource cost using 

MOPTSA3C in multi cloud environment. It is evaluated over 

existing baseline approaches DQN, MOABCQ, A2C 

algorithms using different statistical distributions and 

realtime worklogs. The below Fig.9 and Table XI shows 

evaluated resource cost using uniform distribution for 

MOPTSA3C. 
TABLE XI 

EVALUATION OF RESOURCE COST  USING UNIFORM DISTRIBUTION 

Tasks(u01) DQN MOABCQ A2C MOPTSA3C 

100 5.27  6.12  4.98   4.41 

500 7.08  7.26 5.87  5.25 

1000 8.14   8.28  6.22  6.72 

 

 

FIGURE 9. Evaluation of Resource Cost using u01 

Generated Resource cost for DQN for 100,500, 1000 tasks is 

5.27, 7.08, 8.14 respectively. Generated Resource cost for 

MOABCQ  with 100,500, 1000 tasks is  6.12, 7.26, 8.28 

respectively. Resource cost generated for A2C with 

100,500,1000 tasks is 4.98, 5.87, 6.22 respectively. Resource 

cost generated for MOPTSA3C with 100,500,1000 tasks is 
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4.41, 5.25, 6.72 respectively. From the above Fig.9 and Table 

XI it is clearly shown that when tasks are increased from 100 

to 1000 still MOPTSA3C learns the policies posed in 

scheduler and outperforms all existing approaches by 

minimizing resource cost for uniform distribution. 

 

 

FIGURE 10.Evaluation of Resource Cost using n02 

TABLE XII 

EVALUATION OF RESOURCE COST USING NORMAL DISTRIBUTION 

Tasks(n02) DQN MOABCQ A2C MOPTSA3C 

100 7.26  6.23 5.83  5.43 

500 6.87   7.88   6.84  6.37 

1000 5.98  8.24  7.36 7.25 

 

Generated Resource cost for DQN for 100,500, 1000 tasks is 

7.26, 6.87, 5.98 respectively. Generated Resource cost for 

MOABCQ  with 100,500, 1000 tasks is  6.23, 7.88, 8.24 

respectively. Resource cost generated for A2C with 

100,500,1000 tasks is 5.83, 6.84, 7.36 respectively. Resource 

cost generated for MOPTSA3C with 100,500,1000 tasks is 

5.43, 6.37, 7.25  respectively. From the above Fig.10 and 

Table XII it is clearly shown that when tasks are increased 

from 100 to 1000 still MOPTSA3C learns the policies posed 

in scheduler and outperforms all existing approaches by 

minimizing resource cost for Normal distribution. 

 

FIGURE 11.Evaluation of Resource Cost using l03 

 
TABLE XIII 

EVALUATION OF RESOURCE COST USING LEFT SKEWED DISTRIBUTION 

Tasks(l03) DQN MOABCQ A2C MOPTSA3C 

100 8.56  7.98  7.34 7.02 

500 9.35  9.08 8.36 7.94 

1000 10.47  10.06  9.46   9.12 

 

Generated Resource cost for DQN for 100,500, 1000 tasks is 

8.56, 9.35, 10.47 respectively. Generated Resource cost for 

MOABCQ  with 100,500, 1000 tasks is  7.98, 9.08, 10.06  

respectively. Resource cost generated for A2C with 

100,500,1000 tasks is 7.34, 8.36, 9.46 respectively. Resource 

cost generated for MOPTSA3C with 100,500,1000 tasks is 

7.02, 7.94, 9.12  respectively. From the above Fig.11 and 

Table XIII it is clearly shown that when tasks are increased 

from 100 to 1000 still MOPTSA3C learns the policies posed 

in scheduler and outperforms all existing approaches by 

minimizing resource cost for left skewed distribution. 

 

 

FIGURE 12.Evaluation of Resource cost using r04 

 

 

TABLE XIV 

EVALUATION OF RESOURCE COST USING RIGHT SKEWED DISTRIBUTION 

Tasks(r04) DQN MOABCQ A2C MOPTSA3C 

100 9.78  8.57  7.87  7.29 

500 8.94  9.22  8.54  8.07 

1000 10.27 10.02  9.51 9.23 

Generated Resource cost for DQN for 100,500, 1000 tasks is 

9.78, 8.94, 10.27 respectively. Generated Resource cost for 

MOABCQ  with 100,500, 1000 tasks is  8.57, 9.22, 10.02  

respectively. Resource cost generated for A2C with 

100,500,1000 tasks is 7.87, 8.54, 9.51 respectively. Resource 

cost generated for MOPTSA3C with 100,500,1000 tasks is 

7.29, 8.07, 9.23  respectively. From the above Fig.12 and 

Table XIV it is clearly shown that when tasks are increased 

from 100 to 1000 still MOPTSA3C learns the policies posed 

in scheduler and outperforms all existing approaches by 

minimizing resource cost for right skewed distribution. 
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FIGURE 13.Evaluation of Resource cost using h05 

 
TABLE XV 

EVALUATION OF RESOURCE COST USING HPC2N WORKLOAD 

Tasks(h05) DQN MOABCQ A2C MOPTSA3C 

100 12.57   13.45  10.37   9.07 

500 13.36   11.32 11.27 10.46 

1000 15.47  12.35   12.74  11.33 

Generated Resource cost for DQN for 100,500, 1000 tasks is 

12.57, 13.36, 15.47 respectively. Generated Resource cost 

for MOABCQ  with 100,500, 1000 tasks is 13.45, 11.32, 

12.35   respectively. Resource cost generated for A2C with 

100,500,1000 tasks is 10.37, 11.27, 12.74 respectively. 

Resource cost generated for MOPTSA3C with 100,500,1000 

tasks is 9.07, 10.46, 11.33  respectively. From the above 

Fig.13 and Table XV it is clearly shown that when tasks are 

increased from 100 to 1000 still MOPTSA3C learns the 

policies posed in scheduler and outperforms all existing 

approaches by minimizing resource cost for HPC2N 

Workload. 
TABLE XVI 

EVALUATION OF RESOURCE COST USING NASA WORKLOAD 

Tasks(na06) DQN MOABCQ A2C MOPTSA3C 

100 14.22  12.86  10.26  9.57 

500 12.87  11.53  11.08   10.09 

1000 13.21   10.67  12.25   11.29 

 

Generated Resource cost for DQN for 100,500, 1000 tasks is 

14.22, 12.87, 13.21 respectively. Generated Resource cost 

for MOABCQ  with 100,500, 1000 tasks is 12.86, 11.53, 

10.67   respectively. Resource cost generated for A2C with 

100,500,1000 tasks is 10.26, 11.08, 12.25 respectively. 

Resource cost generated for MOPTSA3C with 100,500,1000 

tasks is 9.57, 10.09, 11.29 respectively. From the above 

Fig.14 and Table XVI it is clearly shown that when tasks are 

increased from 100 to 1000 still MOPTSA3C learns the 

policies posed in scheduler and outperforms all existing 

approaches by minimizing resource cost for HPC2N 

Workload. 

 

FIGURE 14.Evaluation of Resource cost using na06 

 

D. RESOURCE UTILIZATION EVALUATION BY 
MOPTSA3C 

This subsection discusses clearly about evaluation of 

Resource utilization using our proposed MOPTSA3C. The 

reason for evaluating resource utilization because improper 

assignment of tasks to VMs in cloud paradigm leads to over 

utilization or underutilization. It mainly effects CSP 

adversely which leads to high energy consumption and 

power cost. Therefore, in this proposed MOPTSA3C 

scheduler we evaluated utilization of resources over DQN, 

MOABCQ, A2C algorithms using different statistical 

distributions and realtime worklogs. The below Fig.15 and 

Table XVII shows evaluated resource utilization using 

uniform distribution for MOPTSA3C. 

 

FIGURE 15.Evaluation of Resource utilization using u01 

 
TABLE XVII 

EVALUATION OF RESOURCE UTILIZATION USING UNIFORM DISTRIBUTION 

Tasks(u01) DQN MOABCQ A2C MOPTSA3C 

100 60.07   62.12 71.64 82.09 

500 70.09  67.28  76.38  85.36 

1000 78.74   69.44 80.12 88.47 

Generated Resource utilization for DQN for 100,500, 1000 

tasks is 60.07, 70.09, 78.74 respectively. Generated 

Resource utilization for MOABCQ  with 100,500, 1000 
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tasks is 62.12, 67.28, 69.44   respectively. Resource 

utilization generated for A2C with 100,500,1000 tasks is 

71.64, 76.38, 80.12 respectively. Resource utilization 

generated for MOPTSA3C with 100,500,1000 tasks is 82.09, 

85.36, 88.47 respectively. From the above Fig.15 and Table 

XVII it is clearly shown that when tasks are increased from 

100 to 1000 still MOPTSA3C learns the policies posed in 

scheduler and outperforms all existing approaches by 

improving resource utilization for uniform distribution. 

 

FIGURE 16.Evaluation of Resource utilization using n02 

 
TABLE XVIII 

EVALUATION OF RESOURCE UTILIZATION USING NORMAL DISTRIBUTION 

Tasks(n02) DQN MOABCQ A2C MOPTSA3C 

100 64.28   68.16 72.04 81.26 

500 68.17  69.35 65.58 86.48 

1000 70.62  58.22 73.44  90.18 

Generated Resource utilization for DQN for 100,500, 1000 

tasks is 64.28, 68.17, 70.62 respectively. Generated 

Resource utilization for MOABCQ  with 100,500, 1000 

tasks is 68.16, 69.35, 58.22   respectively. Resource 

utilization generated for A2C with 100,500,1000 tasks is 

72.04, 65.58, 73.44 respectively. Resource utilization 

generated for MOPTSA3C with 100,500,1000 tasks is 81.26, 

86.48, 90.18 respectively. From the above Fig.16 and Table 

XVIII it is clearly shown that when tasks are increased from 

100 to 1000 still MOPTSA3C learns the policies posed in 

scheduler and outperforms all existing approaches by 

improving resource utilization for Normal distribution. 

 

FIGURE 17.Evaluation of Resource utilization using l03 

TABLE XIX 

EVALUATION OF RESOURCE UTILIZATION USING LEFT SKEWED 

DISTRIBUTION 

Tasks(l03) DQN MOABCQ A2C MOPTSA3C 

100 67.35 49.77 76.09 88.98 

500 71.28 57.26 79.78 91.26 

1000 74.36 68.46 80.56  95.06 

 

Generated Resource utilization for DQN for 100,500, 1000 

tasks is 67.35, 71.28, 74.36 respectively. Generated 

Resource utilization for MOABCQ  with 100,500, 1000 

tasks is 49.77, 57.26, 68.46   respectively. Resource 

utilization generated for A2C with 100,500,1000 tasks is 

76.09, 79.78, 80.56  respectively. Resource utilization 

generated for MOPTSA3C with 100,500,1000 tasks is 88.98, 

91.26, 95.06 respectively. From the above Fig.17 and Table 

XIX it is clearly shown that when tasks are increased from 

100 to 1000 still MOPTSA3C learns the policies posed in 

scheduler and outperforms all existing approaches by 

improving resource utilization for Left Skewed distribution. 

 

FIGURE 18.Evaluation of Resource utilization using r04 

TABLE XX 
EVALUATION OF RESOURCE UTILIZATION USING RIGHT SKEWED 

DISTRIBUTION 

Tasks(r04) DQN MOABCQ A2C MOPTSA3C 

100 56.37 74.03 82.17 85.27 

500 62.02 81.26 79.09 91.64 

1000 70.43 78.52 84.67 93.32 

 

Generated Resource utilization for DQN for 100,500, 1000 

tasks is 56.37, 62.02, 70.43 respectively. Generated 

Resource utilization for MOABCQ  with 100,500, 1000 

tasks is 74.03, 81.26, 78.52   respectively. Resource 

utilization generated for A2C with 100,500,1000 tasks is 

82.17, 79.09, 84.67  respectively. Resource utilization 

generated for MOPTSA3C with 100,500,1000 tasks is 85.27, 

91.64, 93.32 respectively. From the above Fig.18 and Table 

XX it is clearly shown that when tasks are increased from 

100 to 1000 still MOPTSA3C learns the policies posed in 

scheduler and outperforms all existing approaches by 

improving resource utilization for Right Skewed 

distribution. 
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FIGURE 19.Evaluation of Resource utilization using h05 

TABLE XXI 

EVALUATION OF RESOURCE UTILIZATION USING HPC2N WORKLOAD 

Tasks(h05) DQN MOABCQ A2C MOPTSA3C 

100 52.26 54.06 62.40 82.32 

500 63.18 61.76 69.98 87.71 

1000 70.23 67.65 71.43 90.26 

Generated Resource utilization for DQN for 100,500, 1000 

tasks is 52.26, 63.18, 70.23 respectively. Generated 

Resource utilization for MOABCQ  with 100,500, 1000 

tasks is 54.06, 61.76, 67.65   respectively. Resource 

utilization generated for A2C with 100,500,1000 tasks is 

62.4, 69.98, 71.43  respectively. Resource utilization 

generated for MOPTSA3C with 100,500,1000 tasks is 82.32, 

87.71, 90.26 respectively. From the above Fig.19 and Table 

XXI it is clearly shown that when tasks are increased from 

100 to 1000 still MOPTSA3C learns the policies posed in 

scheduler and outperforms all existing approaches by 

improving resource utilization for HPC2N Workload. 
TABLE XXII 

EVALUATION OF RESOURCE UTILIZATION USING NASA WORKLOAD 

Tasks(na06) DQN MOABCQ A2C MOPTSA3C 

100 49.58 58.43 74.62 88.45 

500 62.97 67.48 79.85 90.36 

1000 69.48 71.33 80.25 96.28 

 

 

FIGURE 20.Evaluation of Resource utilization using na06 

Generated Resource utilization for DQN for 100,500, 1000 

tasks is 49.58, 62.97, 69.47 respectively. Generated 

Resource cost for MOABCQ  with 100,500, 1000 tasks is 

58.43, 67.48, 71.33 respectively. Resource utilization 

generated for A2C with 100,500,1000 tasks is 74.62, 79.85, 

80.25  respectively. Resource utilization generated for 

MOPTSA3C with 100,500,1000 tasks is 88.45, 90.36, 96.28 

respectively. From the above Fig.20 and Table XXII it is 

clearly shown that when tasks are increased from 100 to 1000 

still MOPTSA3C learns the policies posed in scheduler and 

outperforms all existing approaches by improving resource 

utilization for NASA Workload. 
E. RELIABILITY EVALUATION BY MOPTSA3C 

This subsection discusses evaluation of Reliability of 

scheduler using MOPTSA3C.  The main reason to evaluate 

Reliability of the scheduler is it will directly impacts QoS of 

Cloud Service Provider through which users are choosing the 

services of that vendor. Reliability directly depends on fault 

rate of system i.e. in this case for Scheduler, it will be 

depends on fault rate of tasks which are not executed 

properly in the model. With this reason we have calculated 

Reliability using MOPTSA3C. We ran simulation of 

MOPTSA3C with 100, 500, 1000 tasks. Proposed Scheduler 

is evaluated over existing DQN, MOABCQ, A2C algorithms 

with both fabricated workloads and realtime supercomputing 

worklogs. 

 

Initially, we evaluated Reliability of MOPTSA3C using 

uniform workload distribution. Generated Reliability for 

DQN for 100,500, 1000 tasks is 0.2,0.15,0.23 respectively. 

Generated Reliability for MOABCQ  with 100,500, 1000 

tasks is 0.134, 0.08, 0.136 respectively. Reliability  

generated for A2C with 100,500,1000 tasks is 0.52,0.27,0.38  

respectively. Resource cost generated for MOPTSA3C with 

100,500,1000 tasks is 0.89, 0.91, 0.92 respectively. From the 

below Fig.21 and Table XXIII it is clearly shown that when 

tasks are increased from 100 to 1000 still MOPTSA3C learns 

the policies posed in scheduler and outperforms all existing 

approaches by improving reliability for uniform Workload. 

 

FIGURE 21.Evaluation of Reliability using u01. 

 
TABLE XXIII  

             EVALUATION OF RELIABILITY  USING UNIFORM DISTRIBUTION 

Tasks(u01) DQN MOABCQ A2C MOPTSA3C 

100 0.2  0.134  0.52   0.89 

500 0.15  0.08 0.27  0.91 

1000 0.23   0.136  0.38  0.92 
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Reliability of MOPTSA3C using Normal workload 

distribution is calculated below. Generated Reliability for 

DQN for 100,500, 1000 tasks is 0.52,0.36,0.49 respectively. 

Generated Reliability for MOABCQ  with 100,500, 1000 

tasks is 0.167, 0.135, 0.179 respectively. Reliability  

generated for A2C with 100,500,1000 tasks is 0.64, 0.48, 

0.73  respectively. Resource cost generated for MOPTSA3C 

with 100,500,1000 tasks is 0.85, 0.96, 0.97 respectively. 

From the below Fig.22 and Table XXIV it is clearly shown 

that when tasks are increased from 100 to 1000 still 

MOPTSA3C learns the policies posed in scheduler and 

outperforms all existing approaches by improving reliability 

for Normal Workload. 

 

FIGURE 22.Evaluation of Reliability using n02. 

 
TABLE XXIV 

             EVALUATION OF RELIABILITY  USING NORMAL DISTRIBUTION 

Tasks(n02) DQN MOABCQ A2C MOPTSA3C 

100 0.52  0.167  0.64  0.85 
500 0.36  0.135 0.48  0.96 

1000 0.49   0.179  0.73  0.97 

 

Reliability of MOPTSA3C using left skewed workload 

distribution is calculated below. Generated Reliability for 

DQN for 100,500, 1000 tasks is 0.35,0.78,0.21 respectively. 

Generated Reliability for MOABCQ  with 100,500, 1000 

tasks is 0.154, 0.178, 0.127 respectively. Reliability  

generated for A2C with 100,500,1000 tasks is 0.73, 0.56, 

0.81  respectively. Resource cost generated for MOPTSA3C 

with 100,500,1000 tasks is 0.91, 0.94, 0.98 respectively. 

From the below Fig.23 and Table XXV it is clearly shown 

that when tasks are increased from 100 to 1000 still 

MOPTSA3C learns the policies posed in scheduler and 

outperforms all existing approaches by improving reliability 

for left skewed Workload. 

 

FIGURE 23.Evaluation of Reliability using l03. 

 

     TABLE XXV 
             EVALUATION OF RELIABILITY  USING LEFT SKEWED DISTRIBUTION 

Tasks(l03) DQN MOABCQ A2C MOPTSA3C 

100 0.35  0.154  0.73  0.91 

500 0.78  0.178 0.56  0.94 

1000 0.21   0.127  0.81  0.98 

Reliability of MOPTSA3C using right skewed workload 

distribution is calculated below. Generated Reliability for 

DQN for 100,500, 1000 tasks is 0.47, 0.81, 0.38 respectively. 

Generated Reliability for MOABCQ  with 100,500, 1000 

tasks is 0.127, 0.142, 0.156 respectively. Reliability  

generated for A2C with 100,500,1000 tasks is 0.68, 0.54, 

0.73  respectively. Resource cost generated for MOPTSA3C 

with 100,500,1000 tasks is 0.913, 0.925, 0.978 respectively. 

From the below Fig.24 and Table XXVI it is clearly shown 

that when tasks are increased from 100 to 1000 still 

MOPTSA3C learns the policies posed in scheduler and 

outperforms all existing approaches by improving reliability 

for Right skewed Workload. 

 

FIGURE 24.Evaluation of Reliability using r04. 

 
TABLE XXVI 

             EVALUATION OF RELIABILITY  USING RIGHT SKEWED DISTRIBUTION 

Tasks(r04) DQN MOABCQ A2C MOPTSA3C 

100 0.47  0.127  0.68  0.913 
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500 0.81  0.142 0.54  0.925 

1000 0.38   0.156  0.73  0.978 

 

Reliability of MOPTSA3C using parallel computing  

workload (HPC2N) is calculated below. Generated 

Reliability for DQN for 100,500, 1000 tasks is 0.43, 0.52, 

0.73 respectively. Generated Reliability for MOABCQ  with 

100,500, 1000 tasks is 0.163, 0.157, 0.131 respectively. 

Reliability  generated for A2C with 100,500,1000 tasks is 

0.87, 0.78, 0.79  respectively. Resource cost generated for 

MOPTSA3C with 100,500,1000 tasks is 0.926, 0.941, 0.987 

respectively. From the below Fig.25 and Table XXVII it is 

clearly shown that when tasks are increased from 100 to 1000 

still MOPTSA3C learns the policies posed in scheduler and 

outperforms all existing approaches by improving reliability 

for HPC2N Workload. 

 

FIGURE 25.Evaluation of Reliability using h05. 

 
TABLE XXVII 

             EVALUATION OF RELIABILITY  USING HPC2N WORKLOAD 

Tasks(h05) DQN MOABCQ A2C MOPTSA3C 

100 0.43  0.163  0.87  0.926 

500 0.52  0.157 0.78  0.941 

1000 0.73   0.131  0.79  0.987 

 

Reliability of MOPTSA3C using parallel computing  

workload (NASA) is calculated below. Generated Reliability 

for DQN for 100,500, 1000 tasks is 0.81, 0.59, 0.79 

respectively. Generated Reliability for MOABCQ  with 

100,500, 1000 tasks is 0.168, 0.149, 0.182 respectively. 

Reliability  generated for A2C with 100,500,1000 tasks is 

0.88, 0.91, 0.93  respectively. Resource cost generated for 

MOPTSA3C with 100,500,1000 tasks is 0.946, 0.972, 0.99 

respectively. From the below Fig.26 and Table XXVIII it is 

clearly shown that when tasks are increased from 100 to 1000 

still MOPTSA3C learns the policies posed in scheduler and 

outperforms all existing approaches by improving reliability 

for HPC2N Workload. 

 

FIGURE 26.Evaluation of Reliability using na06. 

 
TABLE XXVIII 

             EVALUATION OF RELIABILITY  USING NASA WORKLOAD 

Tasks(na06) DQN MOABCQ A2C MOPTSA3C 

100 0.81  0.168  0.88  0.946 

500 0.59  0.149 0.91  0.972 

1000 0.79   0.182  0.93  0.99 

 
F. ANALYSIS OF SIMULATION RESULTS 

This subsection discusses about analysis of simulation 

results of MOPTSA3C. Extensive simulations are conducted 

on Cloudsim toolkit and evaluated proposed approach using 

state of art algorithms by DQN, MOABCQ, A2C algorithms 

with different fabricated workload distributions and HPC2N, 

NASA realtime worklogs. In the above results mentioned in 

subsections of V all the parameters evaluated are 

outperformed over existing approaches. In this subsection, 

detailed analysis performed in view of different parameters. 

The below Tables XXIX, XXX, XXXI indicates 

improvement of makespan, resource cost, resource 

utilization respectively for proposed MOPTSA3C approach 

over state of art algorithms.  
TABLE XXIX 

IMPROVEMENT OF MAKESPAN(%) OVER EXISTING ALGORITHMS 

Tasks(u01) DQN MOABCQ A2C 

100 6.40% 14.26% 3.36% 

500 14.40% 15.24% 12.36% 

1000 20.71% 21.95% 18.46% 

Tasks(n02) DQN MOABCQ A2C 

100 24.63% 22.73% 14.43% 

500 37.28% 33.20% 40.92% 

1000 28.07% 31.90% 28.21% 

Tasks(l03) DQN MOABCQ A2C 

100 17.75% 7.86% 5.63% 

500 25.85% 46.00% 33.97% 

1000 21.86% 25.75% 12.85% 

Tasks(r04) DQN MOABCQ A2C 

100 15.39% 25.26% 14.70% 

500 19.20% 28.08% 16.37% 

1000 19.64% 25.49% 17.38% 

Tasks(h05) DQN MOABCQ A2C 

100 32.45% 36.87% 27.89% 

500 22.95% 50.31% 31.54% 

1000 33.99% 52.48% 29.25% 
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Tasks(na06) DQN MOABCQ A2C 

100 32.14% 26.49% 18.10% 

500 19.55% 20.86% 19.02% 

1000 6.29% 23.32% 18.03% 

 

From the above Table XXIX, it is clearly observed that 

proposed MOPTSA3C approach clearly improved makespan 

over existing algorithms. 
TABLE XXX 

IMPROVEMENT OF RESOURCE COST (%) OVER EXISTING ALGORITHMS 

Tasks(u01) DQN MOABCQ A2C 

100 16.32% 27.94% 11.45% 
500 25.85% 27.69% 10.56% 

1000 17.44% 18.84% 8.04% 

Tasks(n02) DQN MOABCQ A2C 

100 25.21% 12.84% 6.86% 

500 7.28% 19.16% 6.87% 

1000 21.24% 12.01% 1.49% 

Tasks(l03) DQN MOABCQ A2C 

100 17.99% 12.03% 4.36% 

500 15.08% 12.56% 5.02% 

1000 12.89% 9.34% 3.59% 

Tasks(r04) DQN MOABCQ A2C 

100 25.46% 14.94% 7.37% 

500 9.73% 12.47% 5.50% 

1000 10.13% 7.88% 2.94% 

Tasks(h05) DQN MOABCQ A2C 

100 27.84% 32.57% 12.54% 

500 21.71% 7.60% 7.19% 

1000 26.76% 8.26% 11.07% 

 
Tasks(na06) DQN MOABCQ A2C 

100 32.70% 25.58% 6.73% 

500 21.60% 12.49% 8.94% 

1000 14.53% 5.81% 7.84% 

From the above Table XXX, it is clearly observed that 

proposed MOPTSA3C approach clearly improved resource 

cost over existing algorithms. 

 

TABLE XXXI 

IMPROVEMENT OF RESOURCE UTILIZATION (%) OVER EXISTING 

ALGORITHMS 

Tasks(u01) DQN MOABCQ A2C 

100 16.32% 27.94% 11.45% 

500 25.85% 27.69% 10.56% 

1000 17.44% 18.84% 8.04% 

Tasks(n02) DQN MOABCQ A2C 

100 25.21% 12.84% 6.86% 

500 7.28% 19.16% 6.87% 

1000 21.24% 12.01% 1.49% 

Tasks(l03) DQN MOABCQ A2C 

100 17.99% 12.03% 4.36% 

500 15.08% 12.56% 5.02% 

1000 12.89% 9.34% 3.59% 

Tasks(r04) DQN MOABCQ A2C 

100 25.46% 14.94% 7.37% 

500 9.73% 12.47% 5.50% 

1000 10.13% 7.88% 2.94% 

Tasks(h05) DQN MOABCQ A2C 

100 27.84% 32.57% 12.54% 

500 21.71% 7.60% 7.19% 

1000 26.76% 8.26% 11.07% 

Tasks(na06) DQN MOABCQ A2C 

100 32.70% 25.58% 6.73% 

500 21.60% 12.49% 8.94% 

1000 14.53% 5.81% 7.84% 

 

From the above Table XXXI, it is clearly observed that 

proposed MOPTSA3C approach clearly improved resource 

utilization over existing algorithms. From the above section 

in result analysis, we have observed that improved A3C in 

multi cloud environment learns features very fast even tasks 

are drastically increased or decreased. We evaluated 

MOPTSA3C with different fabricated statistical 

distributions and realtime workloads HPC2N, NASA.  
TABLE XXXII 

IMPROVEMENT OF RELIABILITY (%) OVER EXISTING ALGORITHMS 

Tasks(u01) DQN MOABCQ A2C 

100 86.00% 54.18% 71.15% 

500 58.67% 37.50% 46.04% 

1000 85.00% 58.47% 58.11% 

Tasks(n02) DQN MOABCQ A2C 

100 63.46% 58.98% 65.81% 

500 66.67% 63.21% 82.11% 

1000 97.96% 49.90% 74.1% 

Tasks(l03) DQN MOABCQ A2C 

100 60.00% 49.91% 43.66% 

500 28.51% 48.09% 61.86% 

1000 36.67% 67.65% 68.99% 

Tasks(r04) DQN MOABCQ A2C 

100 82.26% 68.90% 54.26% 

500 37.54% 55.41% 70.30% 

1000 57.37% 56.92% 68.97% 

Tasks(h05) DQN MOABCQ A2C 

100 88.46% 48.10% 6.44% 

500 81.96% 49.36% 20.64% 

1000 57.21% 65.44% 24.94% 

Tasks(na06) DQN MOABCQ A2C 

100 16.79% 43.10% 7.50% 

500 64.75% 52.35% 6.81% 

1000 25.32% 43.96% 6.45% 

From the above Table XXXII, it is clearly observed that 

proposed MOPTSA3C approach clearly improved reliability 

over existing algorithms. From the above section in result 

analysis, we have observed that improved A3C in multi 

cloud environment learns features very fast even tasks are 

drastically increased or decreased. We evaluated 

MOPTSA3C with different fabricated statistical 

distributions and realtime workloads HPC2N, NASA. All the 

evaluated results of MOPTSA3C outperformed DQN, 

MOABCQ, A2C approaches in view of makespan, Resource 

cost, utilization of Resources, Reliability. 

 

VI. CONCLUSION AND FUTURE WORK  

 

Task scheduling problem (TSP)  is a prodigious challenge in 

cloud computing due to variable incoming tasks comes up to 

cloud application console. It is an important concern for CSP 

to employ a dynamic and effective task scheduler which take 

care of suitability of tasks mapped to VMs in cloud 

environment. An ineffective task scheduler in cloud 

paradigm effects various parameters i.e. makespan, resource 

cost, resource utilization. Many existing authors used 
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metaheuristic approaches and developed task schedulers 

through which they got near optimal approximated 

scheduling decisions which may not always fit for all the 

conditions as it is a dynamic environment. Therefore, to 

tackle this situation, In this research, we used a 

reinforcement learning technique named as Improved 

Asynchronous Advantage  Actor critic (A3C) algorithm to 

model MOPTSA3C scheduler in multicloud environment 

There are two phases in this scheduling approach.  

In the First stage, all tasks coming to cloud application 

console are captured and their priorities are evaluated and 

VM priorities also evaluated based on unit electricity cost at 

datacenters. In the second stage, these priorities are fed to 

scheduler which integrated with Reinforcement learning 

model, generates scheduling decisions and generates reward 

based on multiple thread workers running on actor networks. 

After that critic network evaluates generated rewards and 

evaluate cumulative gradient based on applied policy in the 

network and guides it to move towards a better scheduling 

decisions according to the training given for the agent. 

Finally, we compared MOPTSA3C with existing state of art 

algorithms DQN, MOABCQ, A2C approaches by variating 

tasks from 100 t0 1000. In all the cases, MOPTSA3C 

minimizes makespan, resource cost, improved utilization of 

resources and reliability over existing approaches. In future, 

we are planning to deploy this scheduler in realtime cloud 

environment such as OpenStack to check the efficacy of the 

scheduler.  
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