

Multi-objective Prioritized Task Scheduler using
improved Asynchronous advantage actor critic
(a3c) algorithm in multi cloud environment

SUDHEER MANGALAMPALLI1, GANESH R. KARRI1, (Member, IEEE), SACHI N. MOHANTY1,
(Senior Member, IEEE), SHAHID ALI2, M. IJAZ KHAN3,4, SHERZOD ABDULLAEV5,6, SALMAN
A. ALQAHTANI7
1School of Computer Science and Engineering, VIT-AP University, Amaravati, India-522237 (e-mail: sudheerkietmtech@gmail.com, e-mail:

guncity11@gmail.com, e-mail: sachinandan09@gmail.com)
2School of Computer Electronics Engineering, Peking University, Beijing, P.R. China (e-mail; alikhan@pku.edu.cn)
3Department of Mechanical Engineering, Lebanese American University, Beirut, Lebanon (e-mail; scientificresearchglobe@gmail.com)
4Department of Mathematics and Statistics, Riphah International University, Islamabad 44000, Pakistan (e-mail; scientificresearchglobe@gmail.com)
5Engineering School, Central Asian University, Tashkent, Uzbekistan (e-mail; sherzodbek.abdullaev.1001@gmail.com)
6Scientific and Innovation Department, Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan
7Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh , Saudi Arabia (e-mail;

salmanq@ksu.edu.sa)

Corresponding author: Shahid Ali (e-mail: alikhan@pku.edu.cn), Sudheer Mangalampalli (e-mail: sudheerkietmtech@gmail.com), Salman

A. Alqahtani (e-mail: salmanq@ksu.edu.sa).

ABSTRACT Task scheduling is a crucial challenge in cloud computing paradigm as variety of tasks with

different runtime processing capacities generated from various heterogeneous devices are coming up to cloud

application console which effects system performance in terms of makespan, resource utilization, resource

cost. Therefore, traditional scheduling algorithms may not adapt to this paradigm efficiently. Many existing

authors developed various task schedulers by using metaheuristic approaches to solve Task scheduling

problem(TSP) to get near optimal solutions but still TSP is a highly dynamic challenging scenario as it is a

NP hard problem. To tackle this challenge, this paper introduces a multi objective prioritized task scheduler

using improved asynchronous advantage actor critic(a3c) algorithm which uses priorities of tasks based on

length of tasks, runtime processing capacities and priorities of VMs based on electricity unit cost using multi

cloud environment. Scheduling process carried out in two stages. In the first stage, all incoming tasks, VM

priorities are calculated at the task manager level and in the second stage, Priorities are fed to (MOPTSA3C)

scheduler to generate scheduling decisions to map tasks effectively onto VMs by considering priorities and

schedule tasks based on cost, resource utilization, makespan in the available multi cloud environment.

Extensive simulations are conducted on Cloudsim toolkit by giving input trace different fabricated data

distributions and real time worklogs of HPC2N, NASA datasets to the scheduler. For evaluating the efficacy

of proposed MOPTSA3C, it compared against existing techniques i.e. DQN, A2C, MOABCQ. From the

results, it is evident that proposed MOPTSA3C outperforms existing algorithms for makespan, resource

utilization, resource cost, reliability.

INDEX TERMS Cloud Computing; makespan; Resource utilization; Resource cost; DQN; A2C;MOABCQ

I. INTRODUCTION

Cloud Computing paradigm gives seamless access to

compute, storage, network access in terms of various

services to all the users around the world by accessing them

from their web browser with any type of device [1]. These

services provided by cloud service provider(CSP) through

this paradigm mainly categorized as Infrastructure as a

service in which virtual infrastructure to the user to be

provided to deploy their applications directly on cloud

environment and access it from anywhere in the world.

Platform as a service in which CSP provides a platform to

users to develop their applications by providing necessary

software, run time, development environment as a service.

This service gives a great relaxation to the users as they don’t

need to worry about setting the development environment

and software licenses, patching of software and they can

focus on development of the application by saving time and

investment in infrastructure. Software as a service provides

readymade software services provided to cloud users on

demand based on the requirement [2], [3]. All these services

are to be provided to cloud users around the world on

demand based on user requirement i.e. Service Level

Agreement (SLA). These resources are to be made available

to users with a technique known as virtualization. All these

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mailto:scientificresearchglobe@gmail.com
mailto:sudheerkietmtech@gmail.com

VOLUME XX, 2017 9

virtual resources should be made available to users around

the clock without having down time. It is possible only when

these virtual resources are properly managed by the CSP.

Therefore, it is important to employ an efficient task

scheduler which schedules variety of tasks onto existing

resources provided by CSP. It plays a major role in cloud

paradigm from both the facets of cloud provider, user. It will

be helpful for CSP in a way that it schedules all the tasks/jobs

from various users around the world to the available virtual

resources in the cloud paradigm automatically but this is a

difficult challenge for a CSP to choose an algorithm which

automatically manages and schedules all tasks onto virtual

resources because the generated tasks are of different in size,

runtime processing capacities and moreover that all tasks

from users cannot be processed on a same type of a virtual

resource. Therefore, choosing a proper virtual resource for a

task is a main challenge. Employing an efficient task

scheduler helps user to execute their tasks on an appropriate

virtual resource and thereby helps user to provide quality of

service and not violating SLA. The importance of the task

scheduler in cloud paradigm is it effects various parameters

directly or indirectly and it effects both CSP and cloud users.

Resource utilization is one of the important parameter to be

effected in cloud paradigm if a scheduler is not properly

employed by the CSP. It results directly either into

overutilization or underutilization of resources. It directly

effects both CSP and users. From the facet of cloud user, it

will be a direct effect if the resource utilization is very much

high and if tasks are not accommodatable in the existing

infrastructure, CSP would require more number of virtual

resources which results in increase of resource costs and it

will also impact on availability of a virtual resource to the

user. Therefore, it is very important to choose and employ a

scheduling algorithm which should carefully checks type of

tasks, run time capacity and accordingly it should map tasks

to suitable virtual resources. All the types of tasks cannot be

mapped to same type of virtual resources. Therefore, it is the

responsibility of CSP to carefully employ a scheduling

algorithm to get balance between CSP and user to compute

and facilitate all the requests of users in an efficient way

which gives benefits to both users and CSP. Many existing

task scheduling algorithms are proposed using various

metaheuristic approaches i.e. GA [4], PSO[5], ACO[6],

HEFT[7] etc. These metaheuristic approaches generates near

optimal solutions as the scheduling problem in cloud

computing is NP-Hard. Existing authors also used various

Machine learning and Deep learning techniques i.e.

DRBTSA[8], MOABCQ[9], RATS-HM[10] and few

authors used hybridized approaches combining AI and ML

algorithms with metaheuristic approaches to tackle task

scheduling i.e. AINN-BPSO[11], [12] but still all these

generates near optimal solutions in their perspective and

addressed parameters makespan, energy consumption,

resource utilization but these algorithms still suffers from

adopting to heterogeneous tasks as it is a dynamic

environment and scheduling these variety of tasks to

appropriate precise VM is a challenging scenario while

balancing the resource utilization and resource cost in multi

cloud environment. Therefore, to tackle this issue, in this

paper, we formulated a multi objective task scheduling

approach which considers priorities of tasks based on their

size, runtime capacity and priorities of VMs based on unit

electricity cost. Schedules will be generated by using a deep

reinforcement learning technique asynchronous advantage

actor critic (a3c) algorithm in multi cloud environment

which minimizes makespan, resource cost and improves

resource utilization. The reason to choose a multi cloud

environment is that while scheduling tasks to virtual

resources there may be a chance of unavailability of

resources in cloud environment or there may be a chance of

increase in cost of resources in the cloud environment.

Therefore, to minimize resource cost and improve resource

utilization while scheduling the task our proposed

MOPTSA3C scheduler checks for the pricing of requested

resource and availability in multiple cloud environments and

schedule tasks into that respective cloud environment while

minimizing resource cost.

A. MOTIVATIONS AND CONTRIBUTIONS

Task Scheduling problem (TSP) plays a major role in cloud

computing paradigm as it effects quality of service renders

to customers and CSP while improving resource utilization,

minimizing makespan, resource cost. It is important to

employ an efficient task scheduler in this environment as if

an incoming task is not scheduled to a suitable/precise virtual

resource without considering size of tasks, runtime capacity

then that task scheduling algorithm generates schedules

which results in increase in makespan, improper utilization

of resources. Therefore, it causes a serious problem to CSP

by not utilizing virtual resources thereby effecting the

makespan which results in increase of resource cost which is

a serious concern for the cloud users. Therefore, this

motivates us to tackle this problem using a reinforcement

learning approach (a3c) which takes priorities of tasks, VMs

based on unit electricity cost and checks resource availability

and the cost of virtual resource in multiple cloud

environments and it generates schedules while addressing

makespan, resource utilization and resource cost. The main

objectives and highlights of this manuscript are presented

below.

1. A multi objective prioritized task scheduling

algorithm is formulated using reinforcement

learning strategy.

2. For effective scheduling process, we have

incorporated priorities of tasks, VMs based on unit

electricity cost to schedule tasks in multi cloud

environment.

3. Improved Asynchronous advantage actor

critic(a3c) algorithm is used as methodology in this

research to tackle task scheduling problem in cloud

computing.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

4. Simulations are conducted on Cloudsim to generate

schedules and it is compared against existing

DRLBTSA, MOABCQ, RATSHM approaches.

5. Fabricated data distributions, HPC2N, NASA

worklogs are used as input to this approach to

evaluate its efficacy.

6. Finally, we evaluated parameters makespan,

resource utilization, resource cost, reliability by

using MOPTSA3C.

Rest of the manuscript is organized as follows. Section

II discusses related works, Section III discusses System

architecture, Section IV discusses asynchronous

advantage actor critic algorithm which is the

methodology used in this research, Section V discusses

results, Section VI discusses Conclusion & future

works.
II. RELATED WORKS

This section clearly presents existing algorithms formulated

by various authors to tackle task scheduling in cloud

computing. For minimization of total cost, energy

consumption, authors in [13] proposed a task scheduling

algorithm based on bi directional GGCN to choose precise

VMs to deploy jobs or requests from various users. Authors

used a randomized dataset to evaluate scheduler capability.

It was implemented on COSCO framework in which they

used Defog benchmark for scheduling in this approach.

Hunter plus model is evaluated with different variations of

CNN and results shown huge impact over other variations by

minimizing energy consumption, job completion rate.

Authors in [14], [15] proposed a task scheduling algorithm

in multi cloud environment to tackle trust based parameters

by using a hybrid approach FTTHDRL which is a

combination of Harris hawk optimization and DQN model

which is a reinforcement learning based approach. In this

process, scheduling performed in two stages. In the first

stage, task selection and mapping to the VMs are performed

using Harris Hawk algorithm. In the second stage,

scheduling optimization is performed by DQN model to

adapt to dynamic nature of cloud paradigm as it is difficult

to identify and schedule tasks precisely. It was implemented

on Cloudsim and conducted rigorous simulations are done by

using realtime worklog traces. Finally, it was evaluated over

state of art approaches to check the efficacy of approach.

Results proved that FTTHDRL improves trust on cloud

provider through SLA based parameters. Authors in [16]

proposed a hybrid task scheduling mechanism which

addressed makespan, resource utilization, processing cost.

They used three algorithms in total to perform scheduling

process. Initially task collection and prioritization performed

using HEFT, initial solution generated using GRASP,

schedules generated using BABC algorithm with pareto front

technique. It was implemented using workflowsim. It was

evaluated over state of art algorithms and results of EBABC-

PF shown dominance over them for the above specified

parameters.

 In [17], a hybrid workflow scheduling algorithm proposed

using HEFT, BAT approaches. It was implemented on

workflowsim by using random workload but authors

considered various realtime scientific workflows to evaluate

MOHBA. This approach was compared against

contemporary approaches and results shown impact over

existing algorithms for improvement of makespan, resource

utilization. Minimizing energy consumption in datacenter by

making green computing environment is the target of authors

in [18,19] and this aim made them to develop a VM

placement algorithm by taking the constraints VM

dependency, type of topology. This VMP algorithm chooses

the place of VM based on above said constraints by making

the unused switches to become idle and by reducing resource

waste by improving resource utilization. Modified discrete

Jaya optimization was used as methodology in this approach.

A customized simulation environment was developed by

authors considering various scenarios by varying different

number of VMs to evaluate energy consumption, total task

time, makespan.

Authors in [20] proposed a hybrid task scheduling approach

which combines wild horse optimization, levy flight

operator. In the first stage of scheduling, task distribution

model developed based on schedule length, time, cost. In the

second stage, generated schedules will be optimized by levy

flight operator to improve local search process and to avoid

premature convergence. Cloudsim tool used to implement

this approach. It compared over existing state of art

approaches WOA, MSA,ALO, MALO for evaluating

parameters makespan, energy consumption. Simulation

results proved that IWHOLF-TSC dominated all existing

approaches for above mentioned parameter.

 In [21], authors proposed a hybrid approach HWACO which

works based on weights imposed to converge towards

solutions easily compared with conventional approaches.

Cloudsim used as simulation toolkit in this research. It

compared against conventional approaches ACO, QANA,

BPSO, FCFS. Randomized workloads are given as input to

the HWACO. Analysis of results shown that HWACO

outperformed conventional approaches in view of cost,

efficiency, makespan. A trust based task scheduling

algorithm developed using firefly algorithm in [22], [23] to

address makespan, availability, turnaround efficiency which

effects trust on CSP. They used prioritized scheduling in

which they considered task priorities to carefully schedule

tasks to map virtual resources. It was implemented on

Cloudsim toolkit. TAFFA took an input trace from HPC2N,

NASA worklogs. It evaluated over state of art approaches

and observed that above mentioned parameters are greatly

minimized. A fault tolerant aware scheduler with multiple

objectives while considering QoS constraints is developed

using GBFD which minimizes expenditure cost for users and

success rate for CSP was proposed in [24]. Simulation with

real world cluster taken as input and performed on Cloudsim.

It evaluated against existing task scheduling mechanisms i.e.

FCFS, CGDPS, MBFD. Results proved that GBFD

outperforms other algorithms in various scenarios for

improvement of fault tolerance, user satisfaction.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

Minimization of task execution time by assigning a suitable

task to an appropriate virtual resource is discussed in [25].

For this to happen, GA combined with map reduce

architecture is proposed in [25], [26]. This scheduler works

in two stages. In first stage, tasks are assigned to processor

by scheduling it with GA. In the second stage, GA with map

reduce is combined and assigns heterogeneous tasks to

processors in parallel with the help of priority queues.

Simulations conducted using MATLAB software by using

random task generation. From results it proved that GA

combined with MapReduce greatly minimizes task

execution time over PSO, GA, IWD, MFO, GA algorithms.

In [27], a three layered task scheduling model which

minimizes makespan in Cloud paradigm. In first layer, a

model that uses opposition based learning technique which

uses adaptive mobility factor to expand search strategy. In

the second layer, a whale optimization based gaussian

approach formulates multi objective task scheduling model

which minimizes task completion time. Finally, in the third

layer GCWOA strategy implemented to optimize scheduling

process. This model was implemented on MATLAB

software by using random workload. Finally, GCWOAS2

improves resource utilization, makespan over ACO, WOA,

PSO algorithms. Scheduling cost, time plays a major role in

task scheduling cloud paradigm from both facets of cloud

user and CSP. These issues addressed by authors in [28,29]

by developing a scheduling algorithm using improved whale

optimization. Initially a task scheduling, distribution model

was developed by considering scheduling time, cost

constraints. After this phase, by using inertia weight strategy

whale optimization algorithm applied on this model to

choose best whale i.e. in this case it is best possible task to

map on to a VM. MATLAB tool was used as simulation tool

for simulation. Results of IWC greatly minimizes scheduling

cost, time when it was compared over PSO, ACO, WOA.

Energy consumption in datacenters is a crucial part as

number of users are getting increased in this model, thereby

difficulty arises in efficient distribution of tasks, balancing

the load among different VMs. This problem was tackled by

authors in [30] by using a hybrid approach by combining

squirrel search with improved GA. Proposed hybrid method

improves makespan, execution time and energy consumption

when it was compared ACO, PSO, GA algorithms for the

above specified parameters.

 In [31], [31], authors developed sub models to improve

performance of task scheduler. They used reinforcement

learning and queuing models to formulate sub models i.e.

Task scheduling model, execution model, transmission

model to identify repetitive processes to optimize

performance of the scheduler by using aggregators.

Experimentation conducted using MATLAB software. With

this approach efficiency of task scheduling improved by

taking server rate, arrival rate of tasks as constraints when it

is compared against state of art approaches. Scheduling

analytics jobs in cloud paradigm is difficult as those jobs

confined with different computing characteristics. Therefore

authors in [33] proposed a RL based framework spark

deployed cloud cluster which consists of two RL based

frameworks to schedule jobs which tackles multiple

objectives VM usage cost, job duration. Results shown that

there is a huge impact on improvement of VM usage cost,

job duration on existing frameworks which are configured

with conventional algorithms.

Resource utilization, task execution time gained importance

in task scheduling in cloud computing as workloads in this

model drastically increased and to automate this scheduling

process is a must in cloud model. To handle this situation,

authors in [34] proposed a task scheduler with different RL

approaches i.e. RL, RLL-LSTM, DQN, DRL-LSTM. Out of

these four DRL-LSTM improves memory usage, CPU usage,

task execution time over SJF, RR, IPSO.

 In[35], [36], an energy efficient based task scheduling

algorithm developed using Deep reinforcement learning.

This scheduler was implemented using Cloudsim toolkit and

assumed that entire architecture as public cloud because

users in public cloud can generate any number of tasks at any

time. It was compared over conventional heuristic

approaches in view of energy consumption, response time.

Results proved that DRL based scheduler improves above

said parameters while scheduling jobs efficiently when it is

evaluated over conventional approaches. Streaming

applications causes lot of challenges in cloud paradigm as

they need to be scheduled with specific virtual resources

configured with streaming set of configuration of resources.

This problem solved by authors in [37] by deriving a

dynamic online task scheduler which need to schedule huge

processing capacity tasks to limited virtual resources which

need to render good QoS services. This scheduler modeled

by using DDQN model which have adaptive learning

especially required in cloud model. DDQN-TS evaluated

over conventional metaheuristics with random, google

workload traces, Alibaba benchmarks and observed the

improvement in evaluated parameters task completion rate,

average response time over state of art approaches.

In [38], a bi objective task scheduling algorithm developed

using DQL. Initially Q-learning was combined with Deep

neural network to gain advantages of Q-learning. Primary

concerns in formulation of this scheduler is to improve

resource utilization, makespan. DQL implemented on

workflowsim and compared over MIN-MIN, FCFS, MAX-

MIN, RR algorithms. Results revealed that DQL based

scheduler improves resource utilization, makespan over

existing algorithms. In [39], energy aware task scheduler

concerned with addressing multiple objectives formulated by

using an AINN model. Initially all tasks from various

resources are scheduled accurately using AINN model by

predicting suitable VM for all incoming tasks. Input dataset

generated by using GA algorithm which consists of 18

million instances. MATLAB tool used to simulate this

model. It evaluated over MIN-MIN, GA, Linear regression

models and AINN scheduler revealed that improvement in

average makespan, energy consumption, execution

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

overhead, active racks by 59%, 45%, 88%, 70% respectively

over compared approaches.

 In [31], authors formulated a task scheduling mechanism

which focused on energy consumption, SLA violations.

Methodology chosen by authors is a Deep Reinforcement

Learning model and it consists of two stages. In first stage,

Deep learning model is deployed in which QoS features were

extracted using autoencoders. In second stage, a

reinforcement learning approach which uses collaborative

learning through which characteristics of a task can be easily

deduced and scheduled onto a virtual resource. Extensive set

of simulations were conducted using MATLAB. From

results, it shown that proposed approach outperformed over

state of art algorithms in view of SLA violation, energy

consumption, QoS.

Authors in [40], [41] proposed a cost aware task scheduler to

handle realtime workloads to be scheduled onto VMs which

should minimize cost to run on VMs. DRL model i.e. DQN

is used as methodology to implement this cost model.

Pytorch is used as tool to train and evaluate parameters. DQN

was compared over conventional mechanisms i.e. RR,

Random, Earliest schedulers as they are used as conventional

mechanisms to process batch workloads. Finally, results

proved that DQN surpassed existing algorithms over

parameters Success rate, Average Response time, Cost of

execution of tasks on VMs. A Three level scheduling policy

is designed in [42] by authors to address parameters

makespan, cost. A Deep Q-network model is enhanced to

adopt this procedure. In the first level, a dynamic adaptive

coefficient procedure is adapted to precisely estimate target

value among all diversified values i.e. in this case they need

to estimate the precise VM for set of tasks. In second level,

a pointer based agent network is deployed which selects set

of tasks to identify and send them onto respective VMs for

processing. In third level, a sensing mechanism was

deployed to identify objectives of each task set and preserve

the QoS in the environment. TensorFlow framework used as

simulation tool. WDQDN-RL compared over existing

approaches NSGA-II, MOPSO, DQN-RL. Finally, results

revealed that WDQN-RL outperforms above algorithms in

view of makespan, cost. Energy consumption, makespan,

Migration time are measured in [43] by formulating a task

scheduling algorithm by using a hybrid approach. This

hybrid approach uses capuchin search as local search process

and inverted ACO as global search process. Simulations are

conducted using Cloudsim with input of realtime

supercomputing worklogs. From the outcomes of CapSA, it

was proved that above mentioned parameters are improved

in a drastic manner when it was compared over CSO, PATS,

FHCS approaches.

In [44], authors formulated a hybrid workflow scheduling

algorithm (PCP-ACO) which is a combination of partial

critical path and Ant colony optimization algorithms. In the

initial stage, PCP heuristic calculates priorities based on sub

tasks and deadlines involved in workflow. In the final stage,

metaheuristic will select tasks based on priorities generated

by heuristic in the initial stage. Simulations conducted on

workflowsim and evaluated over state of art algorithms.

Execution cost of PCP-ACO improved by 19%, 17%, 21%

over L-ACO, HP-GA, IC-PCP approaches.

In [45], a multi objective task scheduling model formulated

by authors using an improved a3c algorithm by incorporating

RCNN which consists of multiple threaded training models

which helps in assigning tasks to VMs in dynamic

environment. All the experimentation conducted on edge-

cloud-co simulator. It was evaluated over A3C,

A3C+LSTM,GOBI algorithms and evaluated parameters

Average response time, Energy consumption outperformed

over existing approaches. Authors in [46] proposed an

adaptive multi objective scheduling strategy proposed using

a metaheuristic approach. PSO is the metaheuristic used in

the algorithm which uses adaptive acceleration coefficient to

explore diversity of search solution space and allot tasks to

appropriate VMs based on generated solutions. Cloudsim

toolkit used as simulation platform and evaluated over

different metaheuristic approaches. Finally generated

schedules using AMTS improves resource utilization, energy

consumption over existing algorithms.

In [47], a two layered scheduling strategy developed using

EDA, GA metaheuristic approaches. In the initial stage, task

selection, assignment are done by using EDA and

expandability of search process is enhanced by GA. Finally,

optimization of scheduling process carried out by combining

of both approaches. It simulated on Cloudsim and evaluated

over classical GA, EDA algorithms. Results proved that task

completion time greatly minimized, load balancing is

improved over above classical approaches. Authors in [39]

proposed a multi objective scheduling mechanism which

preserves QoS while allocating tasks to suitable VMs. A

hybrid metaheuristic approach HGA-ACO was used to

formulate scheduling mechanism in which operators of GA

are enhanced using ACO and initialization of ACO

performed using GA approach. All simulations are

conducted using Cloudsim toolkit and compared against

classical GA, ACO algorithms. From results, it proved that

HGA-ACO minimizes response time, task completion time

over conventional mechanisms. Energy consumption is a

crucial aspect for both CSP and user in cloud paradigm.

Authors in [48], [49] aimed at minimization of energy by

formulation of a task scheduler using NSGA-II, AINN

techniques. In this approach, initially characteristics of tasks

and selection of tasks are identified using NSGA-II approach

by incorporating DVFS technique into NSGA-II. For

generated tasks, an AINN technique used to predict VM for

selected tasks in cloud paradigm. Simulation results shown

huge impact over existing approaches by minimizing energy

consumption.

In [50], a task scheduling mechanism formulated using two

folded biological heuristic approaches. These algorithms are

GA, BF algorithms in which initial stage formulated using

GA using different operators to explore search space and

generated solutions are scheduled using BF approach. These

generated solutions are compared over conventional

algorithms. Results shown huge impact over these

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

algorithms with respect to reduction of makespan, energy

consumption in a huge manner.

In [51], a task scheduling strategy formulated using an

improved ACO which considers constraints i.e. makespan,

user budget and these two constraints are used as feedback

mechanism in this approach. Improved ACO considers

feedback of these constraints for every iteration and

evaluates makespan, cost, deadline violations, utilization of

resources. Simulation results shown IACO outperformed

classical metaheuristics in terms of above specified

parameters. Makespan is one of the primary concern in task

scheduling as it effects QoS of CSP. Therefore, authors in

[52] proposed three scheduling approaches, which considers

various tasks from heterogeneous resources and schedules

tasks based on peak load at that respective CSP. Three

scheduling approaches are MCC, MEMAX, CMMNN where

it considers makespan as primary criteria and thereby

resource utilization by all these approaches. Finally these are

evaluated using various synthetic datasets for checking

efficacy of formulated approaches over conventional

approaches. All the proposed formulated approaches

outperforms makespan, utilization of resources over classical

algorithms.

Authors in [53] designed a task scheduling approach which

addresses datacenter infrastructure efficiency, utilization of

CPU, SLA violations. This model formulated by using RL

which looks at rewards for every iteration and make a

decision based on corresponding rewards. It was

implemented using Cloudsim. With the observations of

results generated by RL-EERA approach surpassed on

conventional approaches in view of above mentioned

parameters by effectively allocating resources to

heterogeneous tasks. In [54], a task scheduler is formulated

in two stages using a queuing mechanism and Q-learning

which is a reinforcement learning. In the first stage, a task

dispatcher uses M/M/S queuing mechanism to assign tasks

to virtual resources in cloud paradigm. In second stage, for

generated assignment of tasks, Q-learning mechanism is

applied which gives optimized schedules for each task

assigned to appropriate cloud resources. It was implemented

using Cloudsim and evaluated over classical approaches to

minimize energy consumption.

Authors in [55] designed a scheduling algorithm which

considers multiple objectives makespan, cost to be

addressed. These issues are addressed by authors in [56]

using Markov gaming model which is an AI approach. It

takes number of requests from different workflows, available

VMs in cloud model. Extensive simulations are conducted

by taking AWS EC2 instances. From observing results of

Markov model based algorithm makespan, cost are greatly

reduced over conventional algorithms.

 In [57], a workflow scheduling mechanism developed using

DRL. It developed in two stages. In the first stage, task

selection and assignment operations are performed using

Markov decision model. In second stage, all these schedules

generated are given as an input to DDQN model to predict

failures. It was simulated using Workflowsim. It compared

over classical approaches and observed that improvement in

makespan, utilization of resources, fault tolerance. For

achieving optimized makespan results in cloud paradigm,

authors in [59] developed an ML-based task scheduling

algorithm which uses Q-Learning and HEFT algorithms.

This scheduling is divided into two phases. In first phase,

using a HEFT approach with the help of upward rank task

sorting phase performed and generates schedules according

to the ranks. In Second phase, Q-learning applied on

generated schedules to check whether they achieved better

optimized results or not. Generated schedules may vary in

this paradigm as Q-table updated with different values based

on obtained rewards in previous iterations. QL-HEFT

compared over HEFT_U, HEFT_D,CPOP approaches. From

results, it proved that QL-HEFT minimizes makespan and

improves speedup ratio of tasks in huge manner.

Authors in [59], [60] proposed a multi objective task

scheduling algorithm which uses enhanced version of

multiverse optimizer which is a metaheuristic approach.

Main aim of authors is to address execution time, cost,

resource utilization. Adaptive coefficient used to explore

search space. EMVO compares over MVO, PSO approaches.

Results shown that EMVO minimizes cost, execution time

while resource utilization improved significantly when it is

evaluated against classical approaches.

Authors in [61] designed a task scheduling algorithm focuses

on addressing task processing time, makespan. This

framework designed based on Q-learning which is a RL

based approach. In first phase, tasks are allocated to virtual

servers based on server type. In second phase, Q-learning

based scheduling performed based on past history and

interactions of tasks with VMs by using a parameter upper

confidence bound. It works based on RL mechanism which

is totally reward based. It compared against classical PSO,

RR algorithms. Upon observing results of QMTSF, above

said parameters are significantly improved over classical

approaches. A resource scheduling framework developed by

authors in [62] using Q-learning which is a RL based

approach. It was implemented in workflowsim. This

approach mainly addresses time, cost, deadline analysis, load

balance in scheduling. When it compared over PSO and

CSO, resource utilization improved by 63%, rate of task

acceptance is increased by 54% when it was compared over

crow search mechanism.

In [63], [67], a DRL based scheduling approach was

developed to address makespan, energy consumption,

throughput resource utilization. It was implemented using

Cloudsim toolkit and compared with PSO, MVO, EMVO

algorithms. DRL based approach takes the input of google

cloud job traces and outperformed over all approaches for

mentioned parameters. Authors in [64], [68] proposed a

container based task scheduling algorithm using two folded

approach. In the first phase, to choose a virtual container,

MMCO used as methodology for preserving SLA. For

proper CPU allocation, MPIO approach used for task

clustering and for allocating tasks accurately to suitable

virtual server DCNN is used. Finally it was implemented

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

using Kubernetes container to perform containerization and

when compared over classical approaches DSTS shown

improvement of makespan and efficient allocation of tasks

to suitable virtual servers. In [65], [69], an adaptive task

scheduling algorithm based on Reinforcement learning

proposed using gradient updation for different cloud

environments to accelerate and quickly adapt to that

respective environment. MRLCC compared over existing

baseline algorithms and proved that resource utilization rate

is improved in results of MRLCC.
TABLE I

TASK SCHEDULING ALGORITHMS PROPOSED BY EXISTING AUTHORS

Authors Technique used Addressed Parameters

[11] Hunter Plus model Total Cost, makespan, Energy

Consumption

[12] FTTHDRL makespan, Total cost.

[13] EBABC-PF Makespan, processing cost,

resource utilization.
[14] MOHBA Resource utilization, Makespan,

energy consumption.

[15] MOD-JAYA Total task time, makespan, cost,
energy consumption.

[16] IWHOLF-TSC Power consumption, Task

execution time.
[17] HWACOA execution time, Makespan, Cost.

[18] TAFFA success rate, availability,

makespan and turnaround
efficiency.

[19] GBFD Fault tolerance, user satisfaction

[20] Parallel GA with a

MapReduce

total execution time, cost,

Makespan.

[21] GCWOAS2 Resource utilization, Cost,
throughput, Degree of Imbalance

[22] IWC scheduling cost, task scheduling

time.
[23] CTSS Makespan, energy consumption

and Total power cost.

[24] Random TSRL Server rate, arrival rate of tasks

[25] DRL-based

scheduling

Gain cost, resource utilization,

and makespan.

[26] DRL-LSTM task waiting time and resource
consumption.

[27] DRL job success rate, average

response time, energy
consumption.

[28] DDQN-TS Estimated completion time, Task
transfer time.

[29] DQTS Load balance, makespan

[30] Artificial Neural
Network-based

scheduling

energy consumption, execution
overhead, makespan

[31] Collaborative VM
scheduling

energy, cost, resource utilization,
makespan, SLA

[32] Deep Q-learning

network model

energy efficiency, load balancing

[33] WDDQN-RL Total power cost in datacentres,

Makespan, migration

time, energy consumption.
[34] CAPSA & IACO Load balancing, Execution time.

[35] PCP–ACO Average Execution Cost,

makespan.
[36] A3C energy consumption, task

response time

[37] AMTS Resource utilization, Task

Completion time, energy
consumption.

[38] EDA-GA task completion time, load

balancing, cost
[39] HGA–ACO throughput, completion time and

response time.

[40] NSGA Energy consumption and
makespan

[41] GA- BF energy consumption, response

time, makespan
[42] Improved ACO resource utilization, cost,

deadline violation rate,

makespan.
[43] MCC algorithm makespan and

average cloud utilization

[44] RL-EERA accuracy, CPU Utilization,
Response time.

[45] QEEC task response time, energy

consumption and CPU utilization
[46] DQN Based Multi

agent RL

Task completion time and cost.

[47] RLFTWS makespan, resource usage rate

[48] QL-HEFT Makespan, total cost, response

time.

[49] EMVO resource utilization, Throughput,
execution time

[50] QMTSF Average Processing time,

makespan.
[51] DR Q-learning Load balancing, energy

consumption, deadline violation,

makespan.
[52] Adaptive DRL throughput, makespan, energy

consumption, resource

utilization.
[53] DSTS throughput, resource residual

degree, response time, resource

imbalance degree.
[54] MRLCC average utilization rate,

makespan.

[55] GAGELS Execution time, Resource
utilization

[56] SGO based SJF Makespan, throughput

[57] SG-PBFS Makespan

[58] MTD-DHJS Makespan

From above Table I it is clearly observed that many authors

used various metaheuristic, ML, DL based approaches in

order to solve task scheduling problem in Cloud Computing.

While addressing task scheduling in Cloud paradigm,

authors addressed makespan, execution cost, task waiting

time, energy consumption, power cost, fault tolerance,

resource utilization and generated near optimal solutions but

in cloud model still the problem of resource utilization i.e.

over utilization and underutilization problem persists as it is

an NP-hard problem. Many authors used various approaches

to address utilization of resources and failed to get balance

in between CSP and user as if overutilization occurs resource

cost will be increased drastically. If resources are

underutilized configured virtual resources will be wasted

which incurs huge power consumption. This will create a

burden on the CSP as well as on user. There may be chances

that a virtual resource may not be available in cloud

environment for a specific task or the cost of virtual resource

service is high in cloud environment. Therefore, to tackle this

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

situation and to address parameters initially, (MOPTSA3C)

task scheduler by carefully calculates priorities of both tasks,

VMs which are coming onto cloud application console and

these tasks are sorted in task manager according to task

priorities. Prioritized tasks are to be mapped to prioritized

VMs i.e. in this case VM priorities are evaluated using

highest electricity unit cost among datacenters to electricity

unit cost at that respective datacenter. In the second stage, all

these priorities are fed to scheduler which uses improved

A3C mechanism which is a RL based approach generates

schedules for the collected prioritized tasks. The main aspect

we used in this research is that we have simulated our

proposed MOPTSA3C in multi cloud environment to

minimize resource cost and migrate tasks to respective VMs

where that respective service cost is low.

III. MATHEMATICAL MODELING & SYSTEM
ARCHITECTURE

This section discusses mathematical modeling and System

architecture of proposed MOPTSA3C. Initially, for

mathematical formulation of task scheduler, we consider

𝒌𝟏 number of tasks indicated as 𝒕𝒌𝟏 = {𝒕𝟏, 𝒕𝟐, 𝒕𝟑, … 𝒕𝒌𝟏}. 𝒏𝟏

number of VMs indicated as 𝒗𝒏𝟏 = {𝒗𝟏, 𝒗𝟐, 𝒗𝟑 … 𝒗𝒏𝟏}, 𝒊𝟏

number of physical machines indicated as 𝑷𝑴𝒊 =
{𝑷𝑴𝟏, 𝑷𝑴𝟐, 𝑷𝑴𝟑 … 𝑷𝑴𝒊𝟏}, 𝒋𝟏 number of datacenters

indicated as 𝑫𝑪𝒋𝟏 = {𝑫𝑪𝟏, 𝑫𝑪𝟐, 𝑫𝑪𝟑, … . 𝑫𝑪𝒋𝟏}.In this

research, we formulated problem statement as 𝒕𝒌 tasks

should be mapped to 𝒗𝒏 VMs which resided in 𝑷𝑴𝒊 physical

machines which placed in 𝑫𝑪𝒋 datacenters and assumed it as

a multi cloud environment while minimizing makespan,

resource cost, improves resource utilization. The below

Fig.1. indicates proposed system architecture of

MOPTSA3C. Initially, various tasks are generated from

heterogeneous resources and coming to cloud application

console. These tasks are captured by brokers on behalf of

CSP which is a software agent employed in cloud

architecture. Brokers will submit all these tasks to task

manager. We have induced a process in task manager to

calculate priorities of tasks based on size of tasks and to

which VM it need to be assigned. Therefore, VM priorities

also to be calculated based on unit electricity cost of VMs.

These two priorities are fed together to MOPTSA3C which

is a Deep Reinforcement learning based scheduler captures

these priorities and generates schedules according to

resources available in multiple cloud environments. In this

approach, if one task arrived at scheduler with certain

priority i.e. if it is highest priority it should be mapped to a

VM which is having highest priority i.e. VM with low

electricity cost at respective datacenter in multi cloud

environment. Initially scheduler looks for prioritized VM

availability at the datacenter and if it is not available it looks

for the same prioritized VM in datacenter in other cloud

environment and it also looks for the pricing of the services

requested by the user in both cloud environments and

migrates tasks wherever the resource cost is less. If there is a

case that if none of the datacenters are available with

required prioritized VM then scheduler will assign a VM

with next priority in the cloud model with least cost

pertaining to that service. While scheduling tasks according

to the procedure adapted by MOPTSA3C we are addressing

parameters makespan, resource utilization and resource

costs. The below Table II indicates all notations we have

used in mathematical modeling.
TABLE II

NOTATIONS USED IN MATHEMATICAL MODELING OF MOPTSA3C

Notation Meaning

𝑤𝑙𝑛1
𝑣

 Current Workload running on 𝑛1

VMs

𝑤𝑙𝑖1
𝑃𝑀

 Current Workload running on 𝑖1

Physical Machines

𝑝𝑟𝑐𝑎𝑛1
𝑣

 processing capacity of 𝑛1 VMs

𝑡𝑜𝑡𝑝𝑟𝑐𝑎𝑛1
𝑣 Total capacity of all 𝑛1 VMs

𝑡𝑘1
𝑙

 size of 𝑘1 Tasks

tk1
pri

Task Priorities of all 𝑘1 tasks

𝑣𝑛1
𝑝𝑟𝑖

 VM Priorities of all 𝑛1 VMs

𝑚𝑝𝑘1 Makespan of 𝑘1 Tasks.

𝑒𝑥𝑡𝑘1
 Execution time of 1 Tasks.

𝑓𝑖𝑛𝑖𝑡𝑖𝑚𝑒
𝑡𝑘1 Finish time of 𝑘1 Tasks.

𝑑𝑙𝑡𝑘1
 Deadline constraint of 𝑘1 Tasks.

𝑅𝑒𝑐𝑜𝑠𝑡 Resource cost in multiple Cloud

environments.

𝑙𝑜𝑎𝑑𝑐𝑝𝑢𝑖1
 Load on CPU on considered 𝑖1

Physical Machines

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

FIGURE 1. System Architecture for MOPTSA3C

In this mathematical modeling, we assumed all these

resources are in multiple cloud environments. Initially in this

mathematical modeling, to calculate priorities of tasks, it is

important to know how much workload currently being run

on the VMs. Therefore, current workload on VMs in multiple

cloud environments to be calculated using below

equation(1).

𝒘𝒍𝒏𝟏
𝒗 = ∑ 𝒘𝒍𝒏𝟏 (1)

After calculation of current running load on VMs, as these

VMs are placed in Physical machines. Therefore, we also

need to calculate current running workload on physical

machines in all considered 𝒊𝟏 physical machines in multiple

cloud environments. It is calculated using below equation(2).

𝒘𝒍𝒊𝟏
𝑷𝑴 =

𝒘𝒍𝒏𝟏
𝒗

𝑷𝑴𝒊𝟏
 (2)

It is necessary to know about processing capacities of VMs

considered in different multiple cloud environments as

priorities of tasks will be depends on VM capacities and it is

calculated using equation(3).

𝒑𝒓𝒄𝒂𝒏𝟏
𝒗 = 𝒑𝒓𝒏𝒐 ∗ 𝒑𝒓𝒎𝒊𝒑𝒔 (3)

After calculating each capacity of a VM, total processing

capacities of 𝒏𝟏 VMs considered in multiple cloud

environments calculated using equation(4).

𝒕𝒐𝒕𝒑𝒓𝒄𝒂𝒏𝟏
𝒗 = ∑ 𝒑𝒓𝒄𝒂𝒏𝟏

𝒗 (4)

In our research, it is important to calculate priorities of tasks

as we choose a specific VM for prioritized tasks. To evaluate

priority, we need to know the size of tasks coming to cloud

application console. It is evaluated using equation(5).

𝒕𝒌𝟏
𝒍 = 𝒕𝒎𝒊𝒑𝒔

𝒍 ∗ 𝒕𝒌𝟏
𝒑𝒓

(5)

After calculation of size of tasks from eqn.5. priorities of

tasks are calculated using equation(6).

𝒕𝒌𝟏
𝒑𝒓𝒊

=
𝒕𝒌𝟏

𝒍

𝒑𝒓𝒄𝒂𝒏𝟏
𝒗 (6)

In our research, we are calculating priorities of VMs based

on unit electricity cost which helps scheduler for the efficient

mapping of tasks to VMs. It is calculated using below

equation(7).

𝒗𝒏𝟏
𝒑𝒓𝒊

 =
(𝒆𝒍𝒉𝒊𝒈𝒉

𝒄𝒐𝒔𝒕

𝑫𝑪𝒋𝟏
)∗𝒍𝒐𝒂𝒅𝒄𝒑𝒖𝒊𝟏

𝒆𝒍𝑫𝑪𝒋𝟏
𝒄𝒐𝒔𝒕 (7)

From equation (6) we calculated priorities of tasks,

equation(7) gives priorities of VMs using electricity cost at

datacenters. These both priorities are fed to MOPTSA3C

scheduler by task manager to generate schedules for

incoming tasks. Our scheduler generates schedules with

consideration of priorities by using A3C while minimization

of parameters makespan, resource cost, utilization of

resources. Before calculation of makespan, we are interested

in identifying execution time of tasks as makespan depends

on execution time. Execution time of tasks calculated using

equation(8).

𝒆𝒙𝒕𝒌𝟏
=

𝒆𝒙𝒕

𝒑𝒓𝒄𝒂𝒏𝟏
𝒗 (8)

Every task will have finish time and we have posed a

deadline constraint in our work through which every task

should complete its execution before the deadline is

completed. Therefore, finish time of a task always should be

less than deadline. Initially, finish time of 𝒌𝟏 tasks are

calculated using equation(9). We have mentioned that finish

time should always be less than deadline of considered 𝒌𝟏

tasks and it is mentioned in equation(10).

𝒇𝒊𝒏𝒊𝒕𝒊𝒎𝒆
𝒕𝒌𝟏 = ∑ 𝒗𝒏𝟏 + 𝒆𝒙𝒕𝒌𝟏

 (9)

𝒇𝒊𝒏𝒊𝒕𝒊𝒎𝒆
𝒕𝒌𝟏 < 𝒅𝒍𝒕𝒌𝟏

 (10)

After mathematical formulation of task, VM priorities

makespan is formulated in the equation(11). Makespan is a

primary concern of any task scheduler as it depends on

execution time of all considered tasks. If value of makespan

increases, it effects performance of task scheduler directly.

Therefore it is considered as one of the parameter to be

addressed in our research. It is calculated using equation(11).

𝒎𝒑𝒌𝟏 = 𝒎𝒊𝒏(𝒇𝒊𝒏𝒊𝒕𝒊𝒎𝒆
𝒕𝒌𝟏) (11)

𝒎𝒊𝒏 𝒇𝒊𝒏𝒊𝒕𝒊𝒎𝒆
𝒕𝒌𝟏𝒗𝒏𝟏 = ∑ 𝒊,𝒋(𝒇𝒊𝒏𝒊𝒕𝒊𝒎𝒆

𝒕𝒌𝟏𝒗𝒏𝟏)𝒌𝟏,𝒏𝟏
𝒊=𝟏,𝒋=𝟏 (12)

In equation(12), where, 𝒊,𝒋 is a parameter which indicates

when a task 𝒕𝒌𝟏 is assigned to a VM 𝒗𝒏𝟏 and it will be set to

1 otherwise it will be set to 0. After formulation of makespan,

next parameter we considered is resource cost. The main

reason to choose resource cost as a parameter is most of the

cloud users facing issues with high resource cost which

incurs high billing for the services consumed by cloud user.

This is mainly due to the inefficient mapping of tasks/jobs

requested by user in the cloud environment. To tackle this

and to get benefit for both customer and CSP, we formulated

a prioritized task mapping procedure which maps high

prioritized tasks to a high prioritized VM by checking

availability of that resource availability in multiple cloud

environments where the resource cost is low. If that

corresponding resource is not available and then it can be

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

assigned to the next prioritized resource in cloud

environment where the resource cost is less. It is calculated

using below equation(13).

𝑹𝒆𝒄𝒐𝒔𝒕 = ∑
𝒓𝒖𝒏𝒏𝒊𝒏𝒈 𝒄𝒐𝒔𝒕 𝒐𝒇 𝒕𝒌𝟏∗𝒎𝒆𝒎𝒐𝒓𝒚 𝒇𝒐𝒓 𝒕𝒌𝟏

𝒗𝒏𝟏∗𝑷𝑴𝒊𝟏

𝒗𝒏𝟏
𝒏𝟏=𝟏 (13)

After evaluating resource cost carefully, we are interested in

evaluating utilization of resources in the cloud environment

as if tasks are suitably mapped to an efficient VM then

makespan is minimized which also effects parameters

resource cost, utilization of resources in cloud paradigm.

This motivates us to formulate utilization of resources using

equation(14). Resources in cloud are of two types i.e. CPU,

I/O and bandwidth. In this research, we are focussed on load

of CPU in considered 𝒊𝟏Physical machines in cloud

environment. Therefore, load on CPU in 𝒊𝟏physical

machines are calculated using below equation(14).

𝒍𝒐𝒂𝒅𝒄𝒑𝒖𝒊𝟏
= ∑

𝒖𝒔𝒂𝒈𝒆(𝒌𝟏)

𝒄𝒑𝒖𝒊𝟏

𝒔
𝒌𝟏=𝟏 (14)

Where, 𝒔 indicates number of active tasks on a Physical

machine. 𝒄𝒑𝒖𝒊𝟏
is the capacity of 𝒄𝒑𝒖, 𝒖𝒔𝒂𝒈𝒆(𝒌𝟏) is the

usage of 𝒄𝒑𝒖𝒊𝟏
of 𝒊𝟏physical machine. Reliability of the

scheduler depends on decrease in number of faults.

Generally, in any cloud model, there may be a chance to

occur short term faults like system crash, bugs in software.

These are common faults occurred in system. Probability of

occurrence for transient failures is likely to be followed by

Poisson distribution. We haven’t focused on transient faults

memory, network interfaces in this research. we have

concentrated mainly on fault rate(𝝉) which depends on

computing node operational frequency 𝒇𝒓𝒆𝒒𝒐𝒑. The relation

between operational frequency and fault rate is given in

equation (15).

𝝉(𝒇𝒓𝒆𝒒𝒐𝒑) = 𝝉𝒐. 𝑭(𝒇𝒓𝒆𝒒𝒐𝒑) = 𝝉𝒐. 𝟏𝟎

𝒅(𝟏−𝒇𝒓𝒆𝒒𝒐𝒑)

𝟏−𝒇𝒓𝒆𝒒𝒐𝒑𝒎𝒊𝒏 (15)

Where 𝒇𝒓𝒆𝒒𝒐𝒑 indicates operational frequency, 𝝉𝒐 is initial

fault rate, 𝑭(𝒇𝒓𝒆𝒒𝒐𝒑) is a decreasing function, where 𝒅 > 𝟎

is constant. Reliability of the system is defined in equation

(16)

𝑹𝒆𝒕𝒌𝟏
(𝒇𝒓𝒆𝒒𝒐𝒑) = 𝒆−𝝉(𝒇𝒓𝒆𝒒𝒐𝒑).𝒆𝒙𝒕𝒌𝟏/𝒇𝒓𝒆𝒒𝒐𝒑 (16)

IV. METHODOLOGY USED IN PROPOSED MOPTSA3C

This section discusses methodology used in proposed

MOPTSA3C which is a reinforcement learning approach i.e.

improved Asynchronous Advantage Actor Critic (A3C)

algorithm . It is composed with two components i.e. Actor

network which is used to map your incoming state of tasks

to action space where tasks need to be mapped and executed

whereas on the other hand critic network evaluates action

which is performed by actor network. It is an asynchronous

approach in which each actor network evaluated parallelly

on different threads and each thread after completion of

running it evaluates loss in actor network and interacts with

global network by accumulating gradients. In this research

an improved A3C approach used because conventional A3C

suffers with learning features in a dynamic policy based

complex environments. Therefore, improved A3C which

uses residual convolutional neural network which can

helpful to draw complex relationship between set of tasks

and hosts which improves acceleration of training to make

appropriate decisions in scheduling environment. In this

approach, initially all the data which is two dimensional

folded is to be fed to actor critic network and it is flattened

as one dimensional form and in turn which should be passed

to hidden layer which is fully connected and hidden layer

neurons are set to 256, kernel size is set to 2, step size is set

as 1 .All the data passed through hidden layers and output of

that network is connected to a SoftMax activation function

to keep the range of values are between 0,1. In Asynchrous

advantage actor critic each of the agent runs with different

threads as it is a multi-threading network where each agent

employs a thread independently and based on the outcome

evaluated at each node subsequently submits outcome to a

global network which gives the reward. When multi thread

agents are running in parallel, training speed of algorithm

improves as data given as state space into every actor

network. In our research, for scheduling interval at time 𝑻 is

represented as 𝒊𝑻, state space is represented as 𝒔𝑻, action

space is represented as 𝒂𝑻. Next sequence of state space is

represented as 𝒔𝑻+𝟏 , after evaluation of input state

sequences on it generates a reward which is represented as

𝑹𝒆𝒘𝑻. The reward function should give either it give

positive or negative results. Therefore, a policy  should

observe the results and guide it and adjust the reward to be

maximized. The reward should be maximized and learned

on its own by repetitive process of iterations in the model. It

should be expressed as < 𝒔, 𝒂, , 𝐑𝐞𝐰, 𝒗𝒂𝒍𝒇𝒏 >.

A. STATE SPACE

In the above tuple 𝒔 represents state space which consists

of set of states named as 𝒔 = {𝒔𝟏, 𝒔𝟐, … 𝒔𝑻}which consists of

different tasks . Assume 𝒔𝒕𝒂𝒕𝑻 = {(𝒇𝒕𝒊𝒏𝑷𝑴𝒊𝟏

𝑻 , 𝒇𝒕𝒊𝒏𝒕𝒌𝟏
𝑻 } in

which 𝒇𝒕𝒊𝒏𝑷𝑴𝒊𝟏

𝑻 indicates feature information of Physical

hosts . It is represented as a matrix. 𝒇𝒕𝒊𝒏𝒕𝒌𝟏
𝑻 indicates feature

information of tasks computed on physical machines which

is also represented as a matrix.

B. ACTION SPACE

In the action space, we represent all the actions to be done

for all the possible states which map tasks to the concerned

virtual resources. It is represented as 𝒂 = {𝒂𝟎, 𝒂𝟏, 𝒂𝟐 … 𝒂𝑻}.

In 𝒂𝑻 = {𝒅𝒊𝒋} where 𝒅𝒊𝒋 is mapping action or decision

variable in time interval 𝑻. Entire task mapping process

depends on decision variable.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

C. POLICY

In the improved a3c approach, the policy  have to control

the results obtained from reward function to adjust the result

in maximum optimized manner. It is represented using

(𝒂𝑻|𝒔𝑻) [66]. This is characterized as policy function by

neural network which is represented as (𝒂𝑻|𝒔𝑻; £𝒂).

D. REWARD FUNCTION

This reward function is most important aspect in this

reinforcement learning approach as it will give the outcome

of mapping of tasks. It is indicated as 𝑹𝒆𝒘𝑻(𝒔𝑻, 𝒂𝑻). It

should be calculated using equation(17).

𝑹𝒆𝒘𝑻 = 𝒎𝒊𝒏(𝒎𝒑𝒌𝟏, 𝑹𝒆𝒄𝒐𝒔𝒕) , 𝒎𝒂𝒙 (𝒍𝒐𝒂𝒅𝒄𝒑𝒖𝒊𝟏
) (17)

Reward function should give an outcome and if reward is

negative then it need to give cumulative discount reward and

indicated as 𝒈𝑻. It is calculated using equation (18).

𝒈𝑻 = 𝑹𝒆𝒘𝑻+𝟏 + ¥. 𝑹𝒆𝒘𝑻+𝟐 + ⋯ + ¥𝒕−𝑻−𝟏. 𝑹𝒆𝒘𝑻 (18)

E. VALUE FUNCTION

 Value function represents expectation of state and action

sequences performed by action, state spaces. State value

function is represented as 𝑽(𝒔𝑻) and it is calculated using

equation(19). State-action value function is indicated as

𝒒(𝒔𝑻, 𝒂𝑻) and it is calculated using equation(20).

Expectation from these two functions is indicated using

𝒆𝒙𝒑𝒆𝒄𝒕{}.

 𝑽(𝒔𝑻) = 𝒆𝒙𝒑𝒆𝒄𝒕[𝑹𝒆𝒘𝑻 + ¥. 𝑹𝒆𝒘𝑻+𝟏 +

¥𝒕−𝑻−𝟏. 𝑹𝒆𝒘𝒕|𝒔𝑻]

 (19)

𝒒(𝒔𝑻, 𝒂𝑻) = 𝒆𝒙𝒑𝒆𝒄𝒕[𝒈𝑻|𝒔𝑻, 𝒂𝑻] = 𝒆𝒙𝒑𝒆𝒄𝒕[𝑹𝒆𝒘𝑻 +

¥. 𝒒(𝒔𝑻+𝟏, 𝒂𝑻+𝟏) + ⋯ + |𝒔𝑻, 𝒂𝑻] (20)

Value function can also be calculated using neural network

with the help of network parameter 𝜽𝒃.It is calculated using

equation(21).

𝑽(𝒔𝑻) ≈ 𝑽(𝒔𝑻; 𝜽𝒃), 𝒒(𝒔𝑻, 𝒂𝑻) ≈ 𝒒(𝒔𝑻, 𝒂𝑻; 𝜽𝒃) (21)

F. TRAINING NETWORK

 In this improved A3C approach, all threads runs

simultaneously which consists of different agents and

updates their decisions to global network. This process

continuous until all iterations are completed and returns

maximum reward value. Initially agents in multiple thread

networks run with their sample data and observe the rewards

and cumulative gradient will be collected and submitted to

global network which checks the expected and actual values

and guides each agent in runs in different threads to take a

good decision for scheduling process. In the training process,

for every iteration policy function to be given to the thread

as (𝒂𝑻|𝒔𝑻; £𝒂~), and value function as 𝒒(𝒔𝑻, 𝒂𝑻; 𝜽𝒃~). £𝒂~

and 𝜽𝒃~ are control parameters in network and after every

iteration for state 𝒔𝑻, an action to be done with 𝒂𝑻 and a

reward should be generated as 𝑹𝒆𝒘𝑻 which should be

maximum. For every iteration, if the same policy function if

applied there may be a chance of getting different gradient

values. Therefore, gradient ascent method is used to get

cumulative gradient and it is calculated using equation(22).

𝜵£𝒂~ 𝒆𝒙𝒑𝒆𝒄𝒕[𝒈𝑻] = 𝜵£𝒂~ 𝒍𝒐𝒈(𝒂𝑻|𝒔𝑻; £𝒂~)𝒈𝑻 (22)

After calculation of cumulative gradient using gradient

ascent, there may be a chance that more action causes

increase in gradient value. For every iteration, the probability

of gradient value should be greater than equal to zero.

Increase in gradient value slow down the learning rate. It

should guide actor network to make optimized schedules but

not to slow down the learning process. This is the reason

A3C uses advantage function which is indicated as

𝒂𝒅𝒗(𝒔𝑻, 𝒂𝑻) improves calculation of gradient by subtracting

from baseline function 𝒃𝒂𝒔𝒆(𝒕). It helps algorithm to

maintain unbiasedness in the process and helps it to converge

in an efficient manner. It is calculated using equation(23).

𝒅£𝒂 = 𝒅£𝒂 + 𝜵£𝒂~ 𝒍𝒐𝒈 𝒍𝒐𝒈(𝒂𝑻|𝒔𝑻; £𝒂~)𝒂𝒅𝒗(𝒔𝑻, 𝒂𝑻)

 =𝒅£𝒂 +
𝜵£𝒂~ 𝒍𝒐𝒈 𝒍𝒐𝒈(𝒂𝑻|𝒔𝑻; £𝒂~)(𝒒(𝒔𝑻, 𝒂𝑻; 𝜽𝒃~) −

𝑽(𝒔𝑻; 𝜽𝒃~))

 (23)

In the process for every agent at state 𝒔𝑻, calculates reward

with 𝑹𝒆𝒘𝑻 and value function is calculated as 𝑽(𝒔𝑻; 𝜽𝒃~),

for the next state 𝒔𝑻+𝟏, value function is updated as

𝑽(𝒔𝑻+𝟏; 𝜽𝒃~).

𝑽(𝒔𝑻; 𝜽𝒃~) = 𝑽(𝒔𝑻; 𝜽𝒃~) + 𝜷(𝑹𝒆𝒘𝑻 + ¥. 𝑽(𝒔𝑻+𝟏; 𝜽𝒃~) −
𝑽(𝒔𝑻; 𝜽𝒃~)) (24)

After calculation of value function updated for every

iteration temporal check point error is calculated using

eqn.23.

𝒅𝜽𝒃 =
𝜹[𝑹𝒆𝒘𝑻+¥𝑽(𝒔𝑻+𝟏;𝜽𝒃~)− 𝑽(𝒔𝑻;𝜽𝒃~)]𝟐

𝜹𝜽𝒃~
 (25)

G. UPDATING PARAMETERS

This process have to be repeated by collecting data and map

the tasks to suitable VMs by using improved A3C and to get

maximum reward. After collecting all the gradients , it need

to be submitted to global network by updating parameters. It

is calculated using equation(26).

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

£𝒂 = £𝒂 + 𝜷. 𝒅£𝒂, 𝜽𝒃 = 𝜽𝒃 + 𝜶 𝒅𝜽𝒃 (26)
H. PROPOSED MULTI OBJECTIVE PRIORITIZED

TASK SCHEDULER BY USING IMPROVED A3C

Input: Number of considered tasks 𝒕𝒌𝟏 =
{𝒕𝟏, 𝒕𝟐, 𝒕𝟑, … 𝒕𝒌𝟏},Number of Considered VMs

𝒗𝒏𝟏 = {𝒗𝟏, 𝒗𝟐, 𝒗𝟑 … 𝒗𝒏𝟏}, Number of Physical

machines{𝑷𝑴𝟏, 𝑷𝑴𝟐, 𝑷𝑴𝟑 … 𝑷𝑴𝒊𝟏},Number of

considered Datacenters 𝑫𝑪𝒋𝟏 =

{𝑫𝑪𝟏, 𝑫𝑪𝟐, 𝑫𝑪𝟑, … . 𝑫𝑪𝒋𝟏}, £𝒂, 𝜽𝒃, £𝒂~ , 𝜽𝒃~ , 𝑻, 𝒕

Output: Scheduling decision µ∗(𝒂𝑻|𝒔𝑻; £𝒂)

 Initialize £𝒂, 𝜽𝒃, 𝒕 and set 𝒕 ← 𝟏.
 Initialize £𝒂~ , 𝜽𝒃~ .

 Calculate 𝒕𝒌𝟏
𝒑𝒓𝒊

 using eqn.6.

 Calculate 𝒗𝒏𝟏
𝒑𝒓𝒊

 using eqn.7.

 repeat

 set gradient values 𝒅£𝒂 ← 𝟎, 𝒅𝜽𝒃 ← 𝟎
 set network specific parameters as £𝒂~ ←
 £𝒂, 𝜽𝒃~ ← 𝜽𝒃.

 𝑻𝒔𝒕𝒓𝒕 = 𝑻

 repeat

input status information to state space as 𝒔𝑻,

action space 𝒂𝑻. Apply policy µ(𝒂𝑻|𝒔𝑻; £𝒂~)

Get reward as 𝑹𝒆𝒘𝑻 and move to next state 𝒔𝑻+𝟏

Increment global shared counter, step counter.

until 𝒕 − 𝒕𝒔𝒕𝒓𝒕 == 𝒕𝒎𝒂𝒙 or 𝒕 == 𝒕𝒆𝒏𝒅

Evaluate value function 𝑽(𝒔𝑻) using eqn.19.

for 𝒊 = 𝒕 − 𝟏 , … , 𝒕𝒔𝒕𝒓𝒕 do

calculate value function using eqn.24.

calculate 𝒅𝜽𝒃 using eqn.25.

calculate 𝒅£𝒂 using eqn.23.

check the parameters 𝒎𝒑𝒌𝟏, 𝑹𝒆𝒄𝒐𝒔𝒕, 𝒍𝒐𝒂𝒅𝒄𝒑𝒖𝒊𝟏

end for

update £𝒂by 𝒅£𝒂, 𝜽𝒃 by 𝒅𝜽𝒃.

until 𝑻 > 𝑻𝒎𝒂𝒙

return µ∗(𝒂𝑻|𝒔𝑻; £𝒂)

The below Fig.2. indicates flow of proposed MOPTSA3C.

Initially, it starts with initialization of Global network and

network specific actor-critic parameters. After initialization,

priorities of task, VMs are evaluated using eqns.6,7. Input

state space, action space values, apply the policy and observe

the reward using value function using eqn.17. After

observing reward, check how far the values of parameters are

optimized and if they produce scheduling decisions

according to the expectation in training update them as best

optimized values and update global and local network

parameters. If not calculate the accumulated or cumulative

gradient value and suggest the better scheduling decision to

the policy function we used in the approach. Repeat this

process until all the iterations are completed.

V. SIMULATION AND RESULTS

This section discusses about Simulation and results of

proposed MOPTSA3C(Multi Objective Prioritized Task

scheduler using improved A3C) algorithm. Entire

simulation of the proposed approach using Cloudsim toolkit.

This proposed approach uses various data distributions of

fabricated datasets represented as u01, n02, l03, r04 i.e.

uniform, normal, left, right skewed distributions and realtime

supercomputing worklogs which are represented as h05 for

HPC2N , na06 for NASA respectively. Subsection A

discusses Simulation and configuration settings, Subsection

B discusses calculation of makespan using MOPTSA3C,

Subsection C discusses calculation of Resource cost using

MOPTSA3C, Subsection D discusses calculation of

Resource utilization using MOPTSA3C, Subsection E

discusses calculation of Reliability using MOPTSA3C,

Subsection F discusses Analysis of results and discussion.

Entire simulation ran for 100 iterations. Finally proposed

approach evaluated over existing approaches DQN,

MOABCQ, A2C algorithms for evaluating parameters

makespan, resource cost, resource utilization.
A. SIMULATION SETTINGS USED IN MOPTSA3C

The below subsection discusses simulation and

configuration settings used in proposed MOPTSA3C. This

below Table III indicates simulation settings used in our

simulation.

TABLE III

CONFIGURATION SETTINGS FOR SIMULATION

Entity Quantity

Tasks 1000

VMs 100

Tasks length 900,000

Memory of PM 64GB

PM Bandwidth 1200 MBPS

Memory of VM 4 GB

Storage of PM 4TB

Storage of VM 64GB

VM Bandwidth 10 MBPS

PM Operating

System

MAC

Datacenters 70

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

FIGURE 2. Flow of MOPTSA3C algorithm

The MOPTSA3C algorithm's total time complexity

encompasses several components: first, the task priority

calculation with a complexity of O(k1 log k1) for k1 tasks.

Second, the computation of VM priorities among n1 VMs,

taking O(n1 log n1) time. Third, establishing the mapping

between k1 tasks and prioritized VMs, which demands

O(k1 * n1) due to reward calculation. Finally, executing

k1 tasks incurs a complexity of O(k1). In the context of

the MOPTSA3C algorithm, the dominating factor for the

total time complexity emerges from the mapping step

(O(k1 * n1)), which significantly influences the

algorithm's computational load. Consequently, while

individual operations like task and VM priority

calculations (O(k1 log k1) and O(n1 log n1) respectively)

and task execution (O(k1)) are relevant, the algorithm's

overall complexity predominantly aligns with the

mapping process, specifically due to its dependence on

both the number of tasks and virtual machines.

The below Table IV indicates parameter settings for

MOPTSA3C which is used for training.
TABLE IV

PARAMETER SETTINGS FOR MOPTSA3C

Name Value

Rate of Learning (𝛽) 0.00001

Rate of Learning(𝛼) 0.001

Decay factor(¥) 0.8

Activation Functions SoftMax, RELU

Number of Threads 15

Global Shared counter

𝑇𝑚𝑎𝑥

2200

Local Thread Counter

𝑡𝑙𝑜𝑐𝑎𝑙

220

B. MAKESPAN EVALUATION BY MOPTSA3C

This subsection discusses evaluation of makespan for

MOPTSA3C. The reason to evaluate makespan is that it

directly affect scheduling process in cloud paradigm. An

inefficient task scheduler increases makespan and thereby

effects QoS of cloud service provider. This motivates us to

evaluate makespan of MOPTSA3C scheduler in multi cloud

environment by using different statistical distributions and

realtime worklogs. The below Fig.3 and Table V represents

evaluated makespan for MOPTSA3C using uniform

distribution.

TABLE V
EVALUATION OF MAKESPAN USING UNIFORM DISTRIBUTION

Tasks(u01) DQN MOABCQ A2C MOPTSA3C

100 735.21 802.66 712.08 688.18

500 828.57 836.75 809.26 709.27

1000 912.35 926.77 887.12 723.38

FIGURE 3. Evaluation of Makespan using u01

Initially our proposed MOPTSA3C evaluated over baseline

approaches DQN, MOABCQ, A2C algorithms to check

efficacy of MOPTSA3C in view of makespan. We

considered 100-1000 tasks for evaluating makespan with

fabricated uniform distribution of tasks(u01). Generated

makespan for DQN for 100,500, 1000 tasks is 735.21,

828.57, 912.35 respectively. Generated makespan for

MOABCQ with 100,500, 1000 tasks is 802.66, 836.75,

926.77 respectively. Makespan generated for A2C with

100,500,1000 tasks is 712.08, 809.26, 887.12 respectively.

Makespan generated for MOPTSA3C with 100,500,1000

tasks is 688.18, 709.27, 723.38 respectively. From the above

Fig.3 and Table V it is clearly shown that when tasks are

increased from 100 to 1000 still MOPTSA3C learns the

policies posed in scheduler and outperforms all existing

approaches by minimizing makespan for uniform

distribution of tasks.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

FIGURE 4. Evaluation of Makespan using n02

TABLE VI

EVALUATION OF MAKESPAN USING NORMAL DISTRIBUTION

Tasks(n02) DQN MOABCQ A2C MOPTSA3C

100 935.78 912.67 824.18 705.26

500 1326.77 1245.71 1408.36 832.11

1000 1524.17 1609.87 1527.15 1096.36

The above Table VI and Fig. 4 indicates evaluated makespan

using normal distribution. Generated makespan for DQN for

100,500, 1000 tasks is 935.78, 1326.77, 1524.17

respectively. Generated makespan for MOABCQ with

100,500, 1000 tasks is 912.67, 1245.71, 1609.87

respectively. Makespan generated for A2C with

100,500,1000 tasks is 824.18, 1408.36, 1527.15

respectively. Makespan generated for MOPTSA3C with

100,500,1000 tasks is 705.26, 832.11, 1096.36 respectively.

From the above Figure 4 and Table VI it is clearly shown that

when tasks are increased from 100 to 1000 still MOPTSA3C

learns the policies posed in scheduler and outperforms all

existing approaches by minimizing makespan for Normal

distribution of tasks.

FIGURE 5. Evaluation of Makespan using l03

TABLE VII

EVALUATION OF MAKESPAN USING LEFT SKEWED DISTRIBUTION

Tasks(l03) DQN MOABCQ A2C MOPTSA3C

100 824.56 736.06 718.66 678.19

500 978.16 1343.22 1098.43 725.32

1000 1413.22 1487.35 1267.18 1104.36

The above Table VII and Fig. 5 indicates evaluated

makespan using left skewed distribution. Generated

makespan for DQN for 100,500, 1000 tasks is 824.56,

978.16, 1413.22 respectively. Generated makespan for

MOABCQ with 100,500, 1000 tasks is 736.06, 1343.22,

1487.35 respectively. Makespan generated for A2C with

100,500,1000 tasks is 718.66, 1098.43, 1267.18

respectively. Makespan generated for MOPTSA3C with

100,500,1000 tasks is 678.19, 725.32, 1104.36 respectively.

From the above Figure 5 and Table VII it is clearly shown

that when tasks are increased from 100 to 1000 still

MOPTSA3C learns the policies posed in scheduler and

outperforms all existing approaches by minimizing

makespan for left skewed distribution of tasks.

FIGURE 6. Evaluation of Makespan using r04

TABLE VIII

EVALUATION OF MAKESPAN USING RIGHT SKEWED DISTRIBUTION

Tasks(r04) DQN MOABCQ A2C MOPTSA3C

100 643.39 728.34 638.18 544.38

500 757.68 851.18 732.07 612.21

1000 1426.18 1538.17 1387.19 1146.09

Generated makespan for DQN for 100,500, 1000 tasks is

643.39, 757.68, 1426.18 respectively. Generated makespan

for MOABCQ with 100,500, 1000 tasks is 728.34, 851.18,

1538.17 respectively. Makespan generated for A2C with

100,500,1000 tasks is 638.18, 732.07, 1387.19 respectively.

Makespan generated for MOPTSA3C with 100,500,1000

tasks is 544.38, 612.21, 1146.09 respectively. From the

above Fig.6 and Table VIII it is clearly shown that when

tasks are increased from 100 to 1000 still MOPTSA3C learns

the policies posed in scheduler and outperforms all existing

approaches by minimizing makespan for right skewed

distribution of tasks.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

FIGURE 7. Evaluation of Makespan using h05

TABLE IX

EVALUATION OF MAKESPAN USING HPC2N WORKLOGS

Tasks(h05) DQN MOABCQ A2C MOPTSA3C

100 1464.73 1567.21 1372.17 989.45

500 1762.18 2732.44 1983.45 1357.81

1000 2542.17 3531.19 2372.09 1678.19

Generated makespan for DQN for 100,500, 1000 tasks is

1464.73, 1762.18, 2542.17 respectively. Generated

makespan for MOABCQ with 100,500, 1000 tasks is

1567.21, 2732.44, 3531.19 respectively. Makespan

generated for A2C with 100,500,1000 tasks is 1372.17,

1983.45, 2372.09 respectively. Makespan generated for

MOPTSA3C with 100,500,1000 tasks is 989.45, 1357.81,

1678.19 respectively. From the above Fig.7 and Table IX it

is clearly shown that when tasks are increased from 100 to

1000 still MOPTSA3C learns the policies posed in scheduler

and outperforms all existing approaches by minimizing

makespan for HPC2N worklogs.

FIGURE 8. Evaluation of Makespan using na06

TABLE X
EVALUATION OF MAKESPAN USING NASA WORKLOGS

Tasks(na06) DQN MOABCQ A2C MOPTSA3C

100 924.14 853.07 765.64 627.09
500 1089.26 1107.26 1082.15 876.33

1000 1437.58 1756.93 1643.62 1347.22

Generated makespan for DQN for 100,500, 1000 tasks is

924.14, 1089.26, 1437.58 respectively. Generated makespan

for MOABCQ with 100,500, 1000 tasks is 853.07, 1107.26,

1756.93 respectively. Makespan generated for A2C with

100,500,1000 tasks is 765.64, 1082.15, 1643.62

respectively. Makespan generated for MOPTSA3C with

100,500,1000 tasks is 627.09, 876.33, 1347.22 respectively.

From the above Fig.8 and Table X it is clearly shown that

when tasks are increased from 100 to 1000 still MOPTSA3C

learns the policies posed in scheduler and outperforms all

existing approaches by minimizing makespan for NASA

worklogs.
C. RESOURCE COST EVALUATION BY

MOPTSA3C

This subsection discusses clearly about evaluation of

Resource cost using our proposed MOPTSA3C. The reason

for evaluating resource cost in scheduling in multi cloud

environment is an effective scheduler chooses precise VM to

generate optimize schedules while effecting resource cost.

Ineffective scheduling leads to increase in resource cost

which causes a burden to CSP and as well as to cloud users.

This motivates us to evaluate resource cost using

MOPTSA3C in multi cloud environment. It is evaluated over

existing baseline approaches DQN, MOABCQ, A2C

algorithms using different statistical distributions and

realtime worklogs. The below Fig.9 and Table XI shows

evaluated resource cost using uniform distribution for

MOPTSA3C.
TABLE XI

EVALUATION OF RESOURCE COST USING UNIFORM DISTRIBUTION

Tasks(u01) DQN MOABCQ A2C MOPTSA3C

100 5.27 6.12 4.98 4.41

500 7.08 7.26 5.87 5.25

1000 8.14 8.28 6.22 6.72

FIGURE 9. Evaluation of Resource Cost using u01

Generated Resource cost for DQN for 100,500, 1000 tasks is

5.27, 7.08, 8.14 respectively. Generated Resource cost for

MOABCQ with 100,500, 1000 tasks is 6.12, 7.26, 8.28

respectively. Resource cost generated for A2C with

100,500,1000 tasks is 4.98, 5.87, 6.22 respectively. Resource

cost generated for MOPTSA3C with 100,500,1000 tasks is

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

4.41, 5.25, 6.72 respectively. From the above Fig.9 and Table

XI it is clearly shown that when tasks are increased from 100

to 1000 still MOPTSA3C learns the policies posed in

scheduler and outperforms all existing approaches by

minimizing resource cost for uniform distribution.

FIGURE 10.Evaluation of Resource Cost using n02

TABLE XII

EVALUATION OF RESOURCE COST USING NORMAL DISTRIBUTION

Tasks(n02) DQN MOABCQ A2C MOPTSA3C

100 7.26 6.23 5.83 5.43

500 6.87 7.88 6.84 6.37

1000 5.98 8.24 7.36 7.25

Generated Resource cost for DQN for 100,500, 1000 tasks is

7.26, 6.87, 5.98 respectively. Generated Resource cost for

MOABCQ with 100,500, 1000 tasks is 6.23, 7.88, 8.24

respectively. Resource cost generated for A2C with

100,500,1000 tasks is 5.83, 6.84, 7.36 respectively. Resource

cost generated for MOPTSA3C with 100,500,1000 tasks is

5.43, 6.37, 7.25 respectively. From the above Fig.10 and

Table XII it is clearly shown that when tasks are increased

from 100 to 1000 still MOPTSA3C learns the policies posed

in scheduler and outperforms all existing approaches by

minimizing resource cost for Normal distribution.

FIGURE 11.Evaluation of Resource Cost using l03

TABLE XIII

EVALUATION OF RESOURCE COST USING LEFT SKEWED DISTRIBUTION

Tasks(l03) DQN MOABCQ A2C MOPTSA3C

100 8.56 7.98 7.34 7.02

500 9.35 9.08 8.36 7.94

1000 10.47 10.06 9.46 9.12

Generated Resource cost for DQN for 100,500, 1000 tasks is

8.56, 9.35, 10.47 respectively. Generated Resource cost for

MOABCQ with 100,500, 1000 tasks is 7.98, 9.08, 10.06

respectively. Resource cost generated for A2C with

100,500,1000 tasks is 7.34, 8.36, 9.46 respectively. Resource

cost generated for MOPTSA3C with 100,500,1000 tasks is

7.02, 7.94, 9.12 respectively. From the above Fig.11 and

Table XIII it is clearly shown that when tasks are increased

from 100 to 1000 still MOPTSA3C learns the policies posed

in scheduler and outperforms all existing approaches by

minimizing resource cost for left skewed distribution.

FIGURE 12.Evaluation of Resource cost using r04

TABLE XIV

EVALUATION OF RESOURCE COST USING RIGHT SKEWED DISTRIBUTION

Tasks(r04) DQN MOABCQ A2C MOPTSA3C

100 9.78 8.57 7.87 7.29

500 8.94 9.22 8.54 8.07

1000 10.27 10.02 9.51 9.23

Generated Resource cost for DQN for 100,500, 1000 tasks is

9.78, 8.94, 10.27 respectively. Generated Resource cost for

MOABCQ with 100,500, 1000 tasks is 8.57, 9.22, 10.02

respectively. Resource cost generated for A2C with

100,500,1000 tasks is 7.87, 8.54, 9.51 respectively. Resource

cost generated for MOPTSA3C with 100,500,1000 tasks is

7.29, 8.07, 9.23 respectively. From the above Fig.12 and

Table XIV it is clearly shown that when tasks are increased

from 100 to 1000 still MOPTSA3C learns the policies posed

in scheduler and outperforms all existing approaches by

minimizing resource cost for right skewed distribution.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

FIGURE 13.Evaluation of Resource cost using h05

TABLE XV

EVALUATION OF RESOURCE COST USING HPC2N WORKLOAD

Tasks(h05) DQN MOABCQ A2C MOPTSA3C

100 12.57 13.45 10.37 9.07

500 13.36 11.32 11.27 10.46

1000 15.47 12.35 12.74 11.33

Generated Resource cost for DQN for 100,500, 1000 tasks is

12.57, 13.36, 15.47 respectively. Generated Resource cost

for MOABCQ with 100,500, 1000 tasks is 13.45, 11.32,

12.35 respectively. Resource cost generated for A2C with

100,500,1000 tasks is 10.37, 11.27, 12.74 respectively.

Resource cost generated for MOPTSA3C with 100,500,1000

tasks is 9.07, 10.46, 11.33 respectively. From the above

Fig.13 and Table XV it is clearly shown that when tasks are

increased from 100 to 1000 still MOPTSA3C learns the

policies posed in scheduler and outperforms all existing

approaches by minimizing resource cost for HPC2N

Workload.
TABLE XVI

EVALUATION OF RESOURCE COST USING NASA WORKLOAD

Tasks(na06) DQN MOABCQ A2C MOPTSA3C

100 14.22 12.86 10.26 9.57

500 12.87 11.53 11.08 10.09

1000 13.21 10.67 12.25 11.29

Generated Resource cost for DQN for 100,500, 1000 tasks is

14.22, 12.87, 13.21 respectively. Generated Resource cost

for MOABCQ with 100,500, 1000 tasks is 12.86, 11.53,

10.67 respectively. Resource cost generated for A2C with

100,500,1000 tasks is 10.26, 11.08, 12.25 respectively.

Resource cost generated for MOPTSA3C with 100,500,1000

tasks is 9.57, 10.09, 11.29 respectively. From the above

Fig.14 and Table XVI it is clearly shown that when tasks are

increased from 100 to 1000 still MOPTSA3C learns the

policies posed in scheduler and outperforms all existing

approaches by minimizing resource cost for HPC2N

Workload.

FIGURE 14.Evaluation of Resource cost using na06

D. RESOURCE UTILIZATION EVALUATION BY
MOPTSA3C

This subsection discusses clearly about evaluation of

Resource utilization using our proposed MOPTSA3C. The

reason for evaluating resource utilization because improper

assignment of tasks to VMs in cloud paradigm leads to over

utilization or underutilization. It mainly effects CSP

adversely which leads to high energy consumption and

power cost. Therefore, in this proposed MOPTSA3C

scheduler we evaluated utilization of resources over DQN,

MOABCQ, A2C algorithms using different statistical

distributions and realtime worklogs. The below Fig.15 and

Table XVII shows evaluated resource utilization using

uniform distribution for MOPTSA3C.

FIGURE 15.Evaluation of Resource utilization using u01

TABLE XVII

EVALUATION OF RESOURCE UTILIZATION USING UNIFORM DISTRIBUTION

Tasks(u01) DQN MOABCQ A2C MOPTSA3C

100 60.07 62.12 71.64 82.09

500 70.09 67.28 76.38 85.36

1000 78.74 69.44 80.12 88.47

Generated Resource utilization for DQN for 100,500, 1000

tasks is 60.07, 70.09, 78.74 respectively. Generated

Resource utilization for MOABCQ with 100,500, 1000

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

tasks is 62.12, 67.28, 69.44 respectively. Resource

utilization generated for A2C with 100,500,1000 tasks is

71.64, 76.38, 80.12 respectively. Resource utilization

generated for MOPTSA3C with 100,500,1000 tasks is 82.09,

85.36, 88.47 respectively. From the above Fig.15 and Table

XVII it is clearly shown that when tasks are increased from

100 to 1000 still MOPTSA3C learns the policies posed in

scheduler and outperforms all existing approaches by

improving resource utilization for uniform distribution.

FIGURE 16.Evaluation of Resource utilization using n02

TABLE XVIII

EVALUATION OF RESOURCE UTILIZATION USING NORMAL DISTRIBUTION

Tasks(n02) DQN MOABCQ A2C MOPTSA3C

100 64.28 68.16 72.04 81.26

500 68.17 69.35 65.58 86.48

1000 70.62 58.22 73.44 90.18

Generated Resource utilization for DQN for 100,500, 1000

tasks is 64.28, 68.17, 70.62 respectively. Generated

Resource utilization for MOABCQ with 100,500, 1000

tasks is 68.16, 69.35, 58.22 respectively. Resource

utilization generated for A2C with 100,500,1000 tasks is

72.04, 65.58, 73.44 respectively. Resource utilization

generated for MOPTSA3C with 100,500,1000 tasks is 81.26,

86.48, 90.18 respectively. From the above Fig.16 and Table

XVIII it is clearly shown that when tasks are increased from

100 to 1000 still MOPTSA3C learns the policies posed in

scheduler and outperforms all existing approaches by

improving resource utilization for Normal distribution.

FIGURE 17.Evaluation of Resource utilization using l03

TABLE XIX

EVALUATION OF RESOURCE UTILIZATION USING LEFT SKEWED

DISTRIBUTION

Tasks(l03) DQN MOABCQ A2C MOPTSA3C

100 67.35 49.77 76.09 88.98

500 71.28 57.26 79.78 91.26

1000 74.36 68.46 80.56 95.06

Generated Resource utilization for DQN for 100,500, 1000

tasks is 67.35, 71.28, 74.36 respectively. Generated

Resource utilization for MOABCQ with 100,500, 1000

tasks is 49.77, 57.26, 68.46 respectively. Resource

utilization generated for A2C with 100,500,1000 tasks is

76.09, 79.78, 80.56 respectively. Resource utilization

generated for MOPTSA3C with 100,500,1000 tasks is 88.98,

91.26, 95.06 respectively. From the above Fig.17 and Table

XIX it is clearly shown that when tasks are increased from

100 to 1000 still MOPTSA3C learns the policies posed in

scheduler and outperforms all existing approaches by

improving resource utilization for Left Skewed distribution.

FIGURE 18.Evaluation of Resource utilization using r04

TABLE XX
EVALUATION OF RESOURCE UTILIZATION USING RIGHT SKEWED

DISTRIBUTION

Tasks(r04) DQN MOABCQ A2C MOPTSA3C

100 56.37 74.03 82.17 85.27

500 62.02 81.26 79.09 91.64

1000 70.43 78.52 84.67 93.32

Generated Resource utilization for DQN for 100,500, 1000

tasks is 56.37, 62.02, 70.43 respectively. Generated

Resource utilization for MOABCQ with 100,500, 1000

tasks is 74.03, 81.26, 78.52 respectively. Resource

utilization generated for A2C with 100,500,1000 tasks is

82.17, 79.09, 84.67 respectively. Resource utilization

generated for MOPTSA3C with 100,500,1000 tasks is 85.27,

91.64, 93.32 respectively. From the above Fig.18 and Table

XX it is clearly shown that when tasks are increased from

100 to 1000 still MOPTSA3C learns the policies posed in

scheduler and outperforms all existing approaches by

improving resource utilization for Right Skewed

distribution.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

FIGURE 19.Evaluation of Resource utilization using h05

TABLE XXI

EVALUATION OF RESOURCE UTILIZATION USING HPC2N WORKLOAD

Tasks(h05) DQN MOABCQ A2C MOPTSA3C

100 52.26 54.06 62.40 82.32

500 63.18 61.76 69.98 87.71

1000 70.23 67.65 71.43 90.26

Generated Resource utilization for DQN for 100,500, 1000

tasks is 52.26, 63.18, 70.23 respectively. Generated

Resource utilization for MOABCQ with 100,500, 1000

tasks is 54.06, 61.76, 67.65 respectively. Resource

utilization generated for A2C with 100,500,1000 tasks is

62.4, 69.98, 71.43 respectively. Resource utilization

generated for MOPTSA3C with 100,500,1000 tasks is 82.32,

87.71, 90.26 respectively. From the above Fig.19 and Table

XXI it is clearly shown that when tasks are increased from

100 to 1000 still MOPTSA3C learns the policies posed in

scheduler and outperforms all existing approaches by

improving resource utilization for HPC2N Workload.
TABLE XXII

EVALUATION OF RESOURCE UTILIZATION USING NASA WORKLOAD

Tasks(na06) DQN MOABCQ A2C MOPTSA3C

100 49.58 58.43 74.62 88.45

500 62.97 67.48 79.85 90.36

1000 69.48 71.33 80.25 96.28

FIGURE 20.Evaluation of Resource utilization using na06

Generated Resource utilization for DQN for 100,500, 1000

tasks is 49.58, 62.97, 69.47 respectively. Generated

Resource cost for MOABCQ with 100,500, 1000 tasks is

58.43, 67.48, 71.33 respectively. Resource utilization

generated for A2C with 100,500,1000 tasks is 74.62, 79.85,

80.25 respectively. Resource utilization generated for

MOPTSA3C with 100,500,1000 tasks is 88.45, 90.36, 96.28

respectively. From the above Fig.20 and Table XXII it is

clearly shown that when tasks are increased from 100 to 1000

still MOPTSA3C learns the policies posed in scheduler and

outperforms all existing approaches by improving resource

utilization for NASA Workload.
E. RELIABILITY EVALUATION BY MOPTSA3C

This subsection discusses evaluation of Reliability of

scheduler using MOPTSA3C. The main reason to evaluate

Reliability of the scheduler is it will directly impacts QoS of

Cloud Service Provider through which users are choosing the

services of that vendor. Reliability directly depends on fault

rate of system i.e. in this case for Scheduler, it will be

depends on fault rate of tasks which are not executed

properly in the model. With this reason we have calculated

Reliability using MOPTSA3C. We ran simulation of

MOPTSA3C with 100, 500, 1000 tasks. Proposed Scheduler

is evaluated over existing DQN, MOABCQ, A2C algorithms

with both fabricated workloads and realtime supercomputing

worklogs.

Initially, we evaluated Reliability of MOPTSA3C using

uniform workload distribution. Generated Reliability for

DQN for 100,500, 1000 tasks is 0.2,0.15,0.23 respectively.

Generated Reliability for MOABCQ with 100,500, 1000

tasks is 0.134, 0.08, 0.136 respectively. Reliability

generated for A2C with 100,500,1000 tasks is 0.52,0.27,0.38

respectively. Resource cost generated for MOPTSA3C with

100,500,1000 tasks is 0.89, 0.91, 0.92 respectively. From the

below Fig.21 and Table XXIII it is clearly shown that when

tasks are increased from 100 to 1000 still MOPTSA3C learns

the policies posed in scheduler and outperforms all existing

approaches by improving reliability for uniform Workload.

FIGURE 21.Evaluation of Reliability using u01.

TABLE XXIII

 EVALUATION OF RELIABILITY USING UNIFORM DISTRIBUTION

Tasks(u01) DQN MOABCQ A2C MOPTSA3C

100 0.2 0.134 0.52 0.89

500 0.15 0.08 0.27 0.91

1000 0.23 0.136 0.38 0.92

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

Reliability of MOPTSA3C using Normal workload

distribution is calculated below. Generated Reliability for

DQN for 100,500, 1000 tasks is 0.52,0.36,0.49 respectively.

Generated Reliability for MOABCQ with 100,500, 1000

tasks is 0.167, 0.135, 0.179 respectively. Reliability

generated for A2C with 100,500,1000 tasks is 0.64, 0.48,

0.73 respectively. Resource cost generated for MOPTSA3C

with 100,500,1000 tasks is 0.85, 0.96, 0.97 respectively.

From the below Fig.22 and Table XXIV it is clearly shown

that when tasks are increased from 100 to 1000 still

MOPTSA3C learns the policies posed in scheduler and

outperforms all existing approaches by improving reliability

for Normal Workload.

FIGURE 22.Evaluation of Reliability using n02.

TABLE XXIV

 EVALUATION OF RELIABILITY USING NORMAL DISTRIBUTION

Tasks(n02) DQN MOABCQ A2C MOPTSA3C

100 0.52 0.167 0.64 0.85
500 0.36 0.135 0.48 0.96

1000 0.49 0.179 0.73 0.97

Reliability of MOPTSA3C using left skewed workload

distribution is calculated below. Generated Reliability for

DQN for 100,500, 1000 tasks is 0.35,0.78,0.21 respectively.

Generated Reliability for MOABCQ with 100,500, 1000

tasks is 0.154, 0.178, 0.127 respectively. Reliability

generated for A2C with 100,500,1000 tasks is 0.73, 0.56,

0.81 respectively. Resource cost generated for MOPTSA3C

with 100,500,1000 tasks is 0.91, 0.94, 0.98 respectively.

From the below Fig.23 and Table XXV it is clearly shown

that when tasks are increased from 100 to 1000 still

MOPTSA3C learns the policies posed in scheduler and

outperforms all existing approaches by improving reliability

for left skewed Workload.

FIGURE 23.Evaluation of Reliability using l03.

 TABLE XXV
 EVALUATION OF RELIABILITY USING LEFT SKEWED DISTRIBUTION

Tasks(l03) DQN MOABCQ A2C MOPTSA3C

100 0.35 0.154 0.73 0.91

500 0.78 0.178 0.56 0.94

1000 0.21 0.127 0.81 0.98

Reliability of MOPTSA3C using right skewed workload

distribution is calculated below. Generated Reliability for

DQN for 100,500, 1000 tasks is 0.47, 0.81, 0.38 respectively.

Generated Reliability for MOABCQ with 100,500, 1000

tasks is 0.127, 0.142, 0.156 respectively. Reliability

generated for A2C with 100,500,1000 tasks is 0.68, 0.54,

0.73 respectively. Resource cost generated for MOPTSA3C

with 100,500,1000 tasks is 0.913, 0.925, 0.978 respectively.

From the below Fig.24 and Table XXVI it is clearly shown

that when tasks are increased from 100 to 1000 still

MOPTSA3C learns the policies posed in scheduler and

outperforms all existing approaches by improving reliability

for Right skewed Workload.

FIGURE 24.Evaluation of Reliability using r04.

TABLE XXVI

 EVALUATION OF RELIABILITY USING RIGHT SKEWED DISTRIBUTION

Tasks(r04) DQN MOABCQ A2C MOPTSA3C

100 0.47 0.127 0.68 0.913

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

500 0.81 0.142 0.54 0.925

1000 0.38 0.156 0.73 0.978

Reliability of MOPTSA3C using parallel computing

workload (HPC2N) is calculated below. Generated

Reliability for DQN for 100,500, 1000 tasks is 0.43, 0.52,

0.73 respectively. Generated Reliability for MOABCQ with

100,500, 1000 tasks is 0.163, 0.157, 0.131 respectively.

Reliability generated for A2C with 100,500,1000 tasks is

0.87, 0.78, 0.79 respectively. Resource cost generated for

MOPTSA3C with 100,500,1000 tasks is 0.926, 0.941, 0.987

respectively. From the below Fig.25 and Table XXVII it is

clearly shown that when tasks are increased from 100 to 1000

still MOPTSA3C learns the policies posed in scheduler and

outperforms all existing approaches by improving reliability

for HPC2N Workload.

FIGURE 25.Evaluation of Reliability using h05.

TABLE XXVII

 EVALUATION OF RELIABILITY USING HPC2N WORKLOAD

Tasks(h05) DQN MOABCQ A2C MOPTSA3C

100 0.43 0.163 0.87 0.926

500 0.52 0.157 0.78 0.941

1000 0.73 0.131 0.79 0.987

Reliability of MOPTSA3C using parallel computing

workload (NASA) is calculated below. Generated Reliability

for DQN for 100,500, 1000 tasks is 0.81, 0.59, 0.79

respectively. Generated Reliability for MOABCQ with

100,500, 1000 tasks is 0.168, 0.149, 0.182 respectively.

Reliability generated for A2C with 100,500,1000 tasks is

0.88, 0.91, 0.93 respectively. Resource cost generated for

MOPTSA3C with 100,500,1000 tasks is 0.946, 0.972, 0.99

respectively. From the below Fig.26 and Table XXVIII it is

clearly shown that when tasks are increased from 100 to 1000

still MOPTSA3C learns the policies posed in scheduler and

outperforms all existing approaches by improving reliability

for HPC2N Workload.

FIGURE 26.Evaluation of Reliability using na06.

TABLE XXVIII

 EVALUATION OF RELIABILITY USING NASA WORKLOAD

Tasks(na06) DQN MOABCQ A2C MOPTSA3C

100 0.81 0.168 0.88 0.946

500 0.59 0.149 0.91 0.972

1000 0.79 0.182 0.93 0.99

F. ANALYSIS OF SIMULATION RESULTS

This subsection discusses about analysis of simulation

results of MOPTSA3C. Extensive simulations are conducted

on Cloudsim toolkit and evaluated proposed approach using

state of art algorithms by DQN, MOABCQ, A2C algorithms

with different fabricated workload distributions and HPC2N,

NASA realtime worklogs. In the above results mentioned in

subsections of V all the parameters evaluated are

outperformed over existing approaches. In this subsection,

detailed analysis performed in view of different parameters.

The below Tables XXIX, XXX, XXXI indicates

improvement of makespan, resource cost, resource

utilization respectively for proposed MOPTSA3C approach

over state of art algorithms.
TABLE XXIX

IMPROVEMENT OF MAKESPAN(%) OVER EXISTING ALGORITHMS

Tasks(u01) DQN MOABCQ A2C

100 6.40% 14.26% 3.36%

500 14.40% 15.24% 12.36%

1000 20.71% 21.95% 18.46%

Tasks(n02) DQN MOABCQ A2C

100 24.63% 22.73% 14.43%

500 37.28% 33.20% 40.92%

1000 28.07% 31.90% 28.21%

Tasks(l03) DQN MOABCQ A2C

100 17.75% 7.86% 5.63%

500 25.85% 46.00% 33.97%

1000 21.86% 25.75% 12.85%

Tasks(r04) DQN MOABCQ A2C

100 15.39% 25.26% 14.70%

500 19.20% 28.08% 16.37%

1000 19.64% 25.49% 17.38%

Tasks(h05) DQN MOABCQ A2C

100 32.45% 36.87% 27.89%

500 22.95% 50.31% 31.54%

1000 33.99% 52.48% 29.25%

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

Tasks(na06) DQN MOABCQ A2C

100 32.14% 26.49% 18.10%

500 19.55% 20.86% 19.02%

1000 6.29% 23.32% 18.03%

From the above Table XXIX, it is clearly observed that

proposed MOPTSA3C approach clearly improved makespan

over existing algorithms.
TABLE XXX

IMPROVEMENT OF RESOURCE COST (%) OVER EXISTING ALGORITHMS

Tasks(u01) DQN MOABCQ A2C

100 16.32% 27.94% 11.45%
500 25.85% 27.69% 10.56%

1000 17.44% 18.84% 8.04%

Tasks(n02) DQN MOABCQ A2C

100 25.21% 12.84% 6.86%

500 7.28% 19.16% 6.87%

1000 21.24% 12.01% 1.49%

Tasks(l03) DQN MOABCQ A2C

100 17.99% 12.03% 4.36%

500 15.08% 12.56% 5.02%

1000 12.89% 9.34% 3.59%

Tasks(r04) DQN MOABCQ A2C

100 25.46% 14.94% 7.37%

500 9.73% 12.47% 5.50%

1000 10.13% 7.88% 2.94%

Tasks(h05) DQN MOABCQ A2C

100 27.84% 32.57% 12.54%

500 21.71% 7.60% 7.19%

1000 26.76% 8.26% 11.07%

Tasks(na06) DQN MOABCQ A2C

100 32.70% 25.58% 6.73%

500 21.60% 12.49% 8.94%

1000 14.53% 5.81% 7.84%

From the above Table XXX, it is clearly observed that

proposed MOPTSA3C approach clearly improved resource

cost over existing algorithms.

TABLE XXXI

IMPROVEMENT OF RESOURCE UTILIZATION (%) OVER EXISTING

ALGORITHMS

Tasks(u01) DQN MOABCQ A2C

100 16.32% 27.94% 11.45%

500 25.85% 27.69% 10.56%

1000 17.44% 18.84% 8.04%

Tasks(n02) DQN MOABCQ A2C

100 25.21% 12.84% 6.86%

500 7.28% 19.16% 6.87%

1000 21.24% 12.01% 1.49%

Tasks(l03) DQN MOABCQ A2C

100 17.99% 12.03% 4.36%

500 15.08% 12.56% 5.02%

1000 12.89% 9.34% 3.59%

Tasks(r04) DQN MOABCQ A2C

100 25.46% 14.94% 7.37%

500 9.73% 12.47% 5.50%

1000 10.13% 7.88% 2.94%

Tasks(h05) DQN MOABCQ A2C

100 27.84% 32.57% 12.54%

500 21.71% 7.60% 7.19%

1000 26.76% 8.26% 11.07%

Tasks(na06) DQN MOABCQ A2C

100 32.70% 25.58% 6.73%

500 21.60% 12.49% 8.94%

1000 14.53% 5.81% 7.84%

From the above Table XXXI, it is clearly observed that

proposed MOPTSA3C approach clearly improved resource

utilization over existing algorithms. From the above section

in result analysis, we have observed that improved A3C in

multi cloud environment learns features very fast even tasks

are drastically increased or decreased. We evaluated

MOPTSA3C with different fabricated statistical

distributions and realtime workloads HPC2N, NASA.
TABLE XXXII

IMPROVEMENT OF RELIABILITY (%) OVER EXISTING ALGORITHMS

Tasks(u01) DQN MOABCQ A2C

100 86.00% 54.18% 71.15%

500 58.67% 37.50% 46.04%

1000 85.00% 58.47% 58.11%

Tasks(n02) DQN MOABCQ A2C

100 63.46% 58.98% 65.81%

500 66.67% 63.21% 82.11%

1000 97.96% 49.90% 74.1%

Tasks(l03) DQN MOABCQ A2C

100 60.00% 49.91% 43.66%

500 28.51% 48.09% 61.86%

1000 36.67% 67.65% 68.99%

Tasks(r04) DQN MOABCQ A2C

100 82.26% 68.90% 54.26%

500 37.54% 55.41% 70.30%

1000 57.37% 56.92% 68.97%

Tasks(h05) DQN MOABCQ A2C

100 88.46% 48.10% 6.44%

500 81.96% 49.36% 20.64%

1000 57.21% 65.44% 24.94%

Tasks(na06) DQN MOABCQ A2C

100 16.79% 43.10% 7.50%

500 64.75% 52.35% 6.81%

1000 25.32% 43.96% 6.45%

From the above Table XXXII, it is clearly observed that

proposed MOPTSA3C approach clearly improved reliability

over existing algorithms. From the above section in result

analysis, we have observed that improved A3C in multi

cloud environment learns features very fast even tasks are

drastically increased or decreased. We evaluated

MOPTSA3C with different fabricated statistical

distributions and realtime workloads HPC2N, NASA. All the

evaluated results of MOPTSA3C outperformed DQN,

MOABCQ, A2C approaches in view of makespan, Resource

cost, utilization of Resources, Reliability.

VI. CONCLUSION AND FUTURE WORK

Task scheduling problem (TSP) is a prodigious challenge in

cloud computing due to variable incoming tasks comes up to

cloud application console. It is an important concern for CSP

to employ a dynamic and effective task scheduler which take

care of suitability of tasks mapped to VMs in cloud

environment. An ineffective task scheduler in cloud

paradigm effects various parameters i.e. makespan, resource

cost, resource utilization. Many existing authors used

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

metaheuristic approaches and developed task schedulers

through which they got near optimal approximated

scheduling decisions which may not always fit for all the

conditions as it is a dynamic environment. Therefore, to

tackle this situation, In this research, we used a

reinforcement learning technique named as Improved

Asynchronous Advantage Actor critic (A3C) algorithm to

model MOPTSA3C scheduler in multicloud environment

There are two phases in this scheduling approach.

In the First stage, all tasks coming to cloud application

console are captured and their priorities are evaluated and

VM priorities also evaluated based on unit electricity cost at

datacenters. In the second stage, these priorities are fed to

scheduler which integrated with Reinforcement learning

model, generates scheduling decisions and generates reward

based on multiple thread workers running on actor networks.

After that critic network evaluates generated rewards and

evaluate cumulative gradient based on applied policy in the

network and guides it to move towards a better scheduling

decisions according to the training given for the agent.

Finally, we compared MOPTSA3C with existing state of art

algorithms DQN, MOABCQ, A2C approaches by variating

tasks from 100 t0 1000. In all the cases, MOPTSA3C

minimizes makespan, resource cost, improved utilization of

resources and reliability over existing approaches. In future,

we are planning to deploy this scheduler in realtime cloud

environment such as OpenStack to check the efficacy of the

scheduler.

Acknowledgments: This work was supported by Research

Supporting Project Number (RSP2024R421), King Saud

University, Riyadh, Saudi Arabia.

REFERENCES

1. Sunyaev, Ali, and Ali Sunyaev. "Cloud computing." Internet

Computing: Principles of Distributed Systems and Emerging
Internet-Based Technologies (2020): 195-236.

2. Mangalampalli, Sudheer, et al. "Cloud Computing and

Virtualization." Convergence of Cloud with AI for Big Data
Analytics: Foundations and Innovation (2023): 13-40.

3. W. Zheng et al., "A Deep Fusion Matching Network Semantic

Reasoning Model," Applied Sciences, vol. 12, no. 7, p. 3416,

2022.

4. Fu, Xueliang, et al. "Task scheduling of cloud computing based

on hybrid particle swarm algorithm and genetic
algorithm." Cluster Computing 26.5 (2023): 2479-2488.

5. Pirozmand, Poria, et al. "An improved particle swarm

optimization algorithm for task scheduling in cloud
computing." Journal of Ambient Intelligence and Humanized

Computing 14.4 (2023): 4313-4327.

6. Elcock, Jeffrey, and Nekiesha Edward. "An efficient ACO-based
algorithm for task scheduling in heterogeneous multiprocessing

environments." Array 17 (2023): 100280.

7. Mikram, Hind, Said El Kafhali, and Youssef Saadi. "HEPGA: a
new effective hybrid algorithm for scientific workflow

scheduling in cloud computing environment." Simulation

Modelling Practice and Theory (2023): 102864.
8. Mangalampalli, Sudheer, et al. "DRLBTSA: Deep reinforcement

learning based task-scheduling algorithm in cloud

computing." Multimedia Tools and Applications (2023): 1-29.

9. Kruekaew, Boonhatai, and Warangkhana Kimpan. "Multi-

objective task scheduling optimization for load balancing in

cloud computing environment using hybrid artificial bee colony

algorithm with reinforcement learning." IEEE Access 10 (2022):

17803-17818.
10. Bal, Prasanta Kumar, et al. "A joint resource allocation, security

with efficient task scheduling in cloud computing using hybrid

machine learning techniques." Sensors 22.3 (2022): 1242.
11. Alghamdi, Mohammed I. "Optimization of Load Balancing and

Task Scheduling in Cloud Computing Environments Using

Artificial Neural Networks-Based Binary Particle Swarm
Optimization (BPSO)." Sustainability 14.19 (2022): 11982.

12. W. Zheng and L. Yin, "Characterization inference based on

joint-optimization of multi-layer semantics and deep fusion
matching network," PeerJ Computer Science, 2022.

13. Iftikhar, Sundas, et al. "HunterPlus: AI based energy-efficient

task scheduling for cloud–fog computing
environments." Internet of Things 21 (2023): 100667.

14. Mangalampalli, Sudheer, et al. "Fault tolerant trust based task

scheduler using Harris Hawks optimization and deep

reinforcement learning in multi cloud environment." Scientific

Reports 13.1 (2023): 19179.

15. Y. Mao et al., "New time-differenced carrier phase approach to
GNSS/INS integration," GPS Solutions, vol. 26, no. 4, pp. 122,

2022.

16. Zeedan, Maha, Gamal Attiya, and Nawal El-Fishawy.
"Enhanced hybrid multi-objective workflow scheduling

approach based artificial bee colony in cloud
computing." Computing 105.1 (2023): 217-247.

17. Sobhanayak, Srichandan. "MOHBA: multi-objective workflow

scheduling in cloud computing using hybrid BAT
algorithm." Computing (2023): 1-24.

18. Shirvani, Mirsaeid Hosseini. "An energy-efficient topology-

aware virtual machine placement in Cloud Datacenters: A multi-
objective discrete JAYA optimization." Sustainable Computing:

Informatics and Systems 38 (2023): 100856.

19. Saravanan, G., et al. "Improved wild horse optimization with

levy flight algorithm for effective task scheduling in cloud

computing." Journal of Cloud Computing 12.1 (2023): 24.

20. Chandrashekar, Chirag, et al. "HWACOA scheduler: Hybrid
weighted ant colony optimization algorithm for task scheduling

in cloud computing." Applied Sciences 13.6 (2023): 3433.

21. Mangalampalli, Sudheer, Ganesh Reddy Karri, and Ahmed A.
Elngar. "An Efficient Trust-Aware Task Scheduling Algorithm

in Cloud Computing Using Firefly Optimization." Sensors 23.3

(2023): 1384.
22. G. Sun et al., "Live Migration for Multiple Correlated Virtual

Machines in Cloud-Based Data Centers," IEEE Transactions on

Services Computing, vol. 11, no. 2, pp. 279-291, 2018.
23. Xu, Heyang, et al. "Fault tolerance and quality of service aware

virtual machine scheduling algorithm in cloud data centers." The

Journal of Supercomputing 79.3 (2023): 2603-2625.
24. Peng, Zhihao, et al. "Genetic Algorithm-Based Task Scheduling

in Cloud Computing Using MapReduce

Framework." Mathematical Problems in Engineering 2022
(2022).

25. G. Sun et al., "Dynamic Network Function Provisioning to

Enable Network in Box for Industrial Applications," IEEE
Transactions on Industrial Informatics, vol. 17, no. 10, pp. 7155-

7164, 2021.

26. Ni, Lina, et al. "GCWOAS2: multiobjective task scheduling
strategy based on Gaussian cloud-whale optimization in cloud

computing." Computational Intelligence and Neuroscience 2021

(2021): 1-17.
27. Jia, LiWei, Kun Li, and Xiaoming Shi. "Cloud computing task

scheduling model based on improved whale optimization

algorithm." Wireless Communications and Mobile
Computing 2021 (2021): 1-13.

28. Qiuju, D. E. N. G., W. A. N. G. Ning, and L. U. Yang. "Cloud

Task Scheduling using the Squirrel Search Algorithm and
Improved Genetic Algorithm." International Journal of

Advanced Computer Science and Applications 14.3 (2023).

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

29. Peng, Zhiping, et al. "Random task scheduling scheme based on

reinforcement learning in cloud computing." Cluster

computing 18 (2015): 1595-1607.
30. T. Li et al., "Understanding the Long-Term Evolution of Mobile

App Usage," IEEE Transactions on Mobile Computing, vol. 22,

no. 2, pp. 1213-1230, 2023,
31. Islam, Muhammed Tawfiqul, Shanika Karunasekera, and

Rajkumar Buyya. "Performance and cost-efficient spark job

scheduling based on deep reinforcement learning in cloud
computing environments." IEEE Transactions on Parallel and

Distributed Systems 33.7 (2021): 1695-1710.

32. Rjoub, Gaith, et al. "Deep and reinforcement learning for
automated task scheduling in large‐scale cloud computing

systems." Concurrency and Computation: Practice and

Experience 33.23 (2021): e5919.
33. Yan, Jingchen, et al. "Energy-aware systems for real-time job

scheduling in cloud data centers: A deep reinforcement learning

approach." Computers and Electrical Engineering 99 (2022):

107688.

34. X. Xiao, J. Shu, H. Jiang, J. C. S. Lui, G. Min, J. Liu, et al.,

"Multi-Objective Parallel Task Offloading and Content Caching
in D2D-aided MEC Networks," IEEE Trans. Mobile Comput.,

(2022).

35. Tong, Zhao, et al. "DDQN-TS: A novel bi-objective intelligent
scheduling algorithm in the cloud

environment." Neurocomputing 455 (2021): 419-430.
36. Tong, Zhao, et al. "A scheduling scheme in the cloud computing

environment using deep Q-learning." Information Sciences 512

(2020): 1170-1191.

37. Sharma, Mohan, and Ritu Garg. "An artificial neural network
based approach for energy efficient task scheduling in cloud data

centers." Sustainable Computing: Informatics and Systems 26

(2020): 100373.
38. Wang, Bin, Fagui Liu, and Weiwei Lin. "Energy-efficient VM

scheduling based on deep reinforcement learning." Future

Generation Computer Systems 125 (2021): 616-628.
39. Cheng, Feng, et al. "Cost-aware job scheduling for cloud

instances using deep reinforcement learning." Cluster

Computing (2022): 1-13.
40. P. Li, J. Hu, L. Qiu, Y. Zhao, and B. K. Ghosh, "A Distributed

Economic Dispatch Strategy for Power–Water Networks," IEEE

Trans. Control Netw. Syst., vol. 9, no. 1, pp. 356-366, 2022.
41. Li, Huifang, et al. "Weighted double deep Q-network based

reinforcement learning for bi-objective multi-workflow

scheduling in the cloud." Cluster Computing (2022): 1-18.
42. Rostami, Safdar, Ali Broumandnia, and Ahmad Khademzadeh.

"An energy-efficient task scheduling method for heterogeneous

cloud computing systems using capuchin search and inverted ant
colony optimization algorithm." The Journal of

Supercomputing (2023): 1-37.
43. Shobeiri, Peyman, et al. "PCP–ACO: a hybrid deadline-

constrained workflow scheduling algorithm for cloud

environment." The Journal of Supercomputing (2023): 1-31.
44. Cheng, Yuqing, et al. "Multi objective dynamic task scheduling

optimization algorithm based on deep reinforcement

learning." The Journal of Supercomputing (2023): 1-29.
45. He, Hua, et al. "AMTS: Adaptive multi-objective task

scheduling strategy in cloud computing." China

Communications 13.4 (2016): 162-171.
46. Pang, Shanchen, et al. "An EDA-GA hybrid algorithm for multi-

objective task scheduling in cloud computing." IEEE Access 7

(2019): 146379-146389.
47. Senthil Kumar, A. M., and M. Venkatesan. "Multi-objective task

scheduling using hybrid genetic-ant colony optimization

algorithm in cloud environment." Wireless Personal
Communications 107 (2019): 1835-1848

48. Sathya Sofia, A., and P. GaneshKumar. "Multi-objective task

scheduling to minimize energy consumption and makespan of
cloud computing using NSGA-II." Journal of Network and

Systems Management 26 (2018): 463-485.

49. J. Zhang, Y. Liu, Z. Li, and Y. Lu, "Forecast-Assisted Service

Function Chain Dynamic Deployment for SDN/NFV-Enabled

Cloud Management Systems," IEEE Syst. J., 2023.
50. Srichandan, Sobhanayak, Turuk Ashok Kumar, and Sahoo

Bibhudatta. "Task scheduling for cloud computing using multi-

objective hybrid bacteria foraging algorithm." Future
Computing and Informatics Journal 3.2 (2018): 210-230.

51. Zuo, Liyun, et al. "A multi-objective optimization scheduling

method based on the ant colony algorithm in cloud
computing." Ieee Access 3 (2015): 2687-2699.

52. Panda, Sanjaya K., and Prasanta K. Jana. "Efficient task

scheduling algorithms for heterogeneous multi-cloud
environment." The Journal of Supercomputing 71 (2015): 1505-

1533.

53. Thein, Thandar, et al. "Reinforcement learning based
methodology for energy-efficient resource allocation in cloud

data centers." Journal of King Saud University-Computer and

Information Sciences 32.10 (2020): 1127-1139.

54. Ding, Ding, et al. "Q-learning based dynamic task scheduling for

energy-efficient cloud computing." Future Generation

Computer Systems 108 (2020): 361-371.
55. Wang, Yuandou, et al. "multi-objective workflow scheduling

with deep-Q-network-based multi-agent reinforcement

learning." IEEE access 7 (2019): 39974-39982.
56. Dong, Tingting, et al. "Deep reinforcement learning for fault-

tolerant workflow scheduling in cloud environment." Applied
Intelligence 53.9 (2023): 9916-9932.

57. Tong, Zhao, et al. "QL-HEFT: a novel machine learning

scheduling scheme base on cloud computing
environment." Neural Computing and Applications 32 (2020):

5553-5570.

58. Shukri, Sarah E., et al. "Enhanced multi-verse optimizer for task
scheduling in cloud computing environments." Expert Systems

with Applications 168 (2021): 114230.

59. X. Zhao, Y. Fang, H. Min, X. Wu, W. Wang, et al., "Potential

sources of sensor data anomalies for autonomous vehicles: An

overview from road vehicle safety perspective," Expert Syst.

Appl., vol. 236, p. 121358, 2024.
60. Wang, Yugui, Shizhong Dong, and Weibei Fan. "Task

Scheduling Mechanism Based on Reinforcement Learning in

Cloud Computing." Mathematics 11.15 (2023): 3364.
61. Uma, J., P. Vivekanandan, and S. Shankar. "Optimized

intellectual resource scheduling using deep reinforcement Q‐

learning in cloud computing." Transactions on Emerging
Telecommunications Technologies 33.5 (2022): e4463.

62. Siddesha, K., G. V. Jayaramaiah, and Chandrapal Singh. "A

novel deep reinforcement learning scheme for task scheduling in
cloud computing." Cluster Computing 25.6 (2022): 4171-4188.

63. Muniswamy, Saravanan, and Radhakrishnan Vignesh. "DSTS:

A hybrid optimal and deep learning for dynamic scalable task
scheduling on container cloud environment." Journal of Cloud

Computing 11.1 (2022): 33.

64. Xiu, Xi, et al. "MRLCC: an adaptive cloud task scheduling
method based on meta reinforcement learning." Journal of Cloud

Computing 12.1 (2023): 1-12.

65. Praveen, S. Phani, et al. "A hybrid gravitational emulation local
search-based algorithm for task scheduling in cloud

computing." Mathematical Problems in Engineering 2023

(2023).
66. Praveen, S. Phani, K. Thirupathi Rao, and B. Janakiramaiah.

"Effective allocation of resources and task scheduling in cloud

environment using social group optimization." Arabian Journal
for Science and Engineering 43 (2018): 4265-4272.

67. Murad, Saydul Akbar, et al. "SG-PBFS: Shortest Gap-Priority

Based Fair Scheduling technique for job scheduling in cloud
environment." Future Generation Computer Systems 150

(2024): 232-242.

68. Banerjee, Pallab, et al. "MTD-DHJS: Makespan-Optimized Task
Scheduling Algorithm for Cloud Computing With Dynamic

Computational Time Prediction." IEEE Access (2023).

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 9

69. Mnih, Volodymyr, et al. "Asynchronous methods for deep

reinforcement learning." International conference on machine

learning. PMLR, 2016.

Dr. S Sudheer Mangalampalli, Sudheer
Mangalampalli working as an Assistant Professor

senior Grade-1 in School of Computer Science and

Engineering in VIT AP University. He is a Passionate
researcher and his research interests include Cloud

Computing, Edge Computing, Fog Computing and

Machine Learning. Towards his profile, he is having

12 Publications, which are indexed in Scopus and

SCI databases. He is currently guiding 3 Full time

Ph.D. Scholar in VIT-AP university. He is a member
of IEEE. He is a reviewer for various SCI indexed

journals.

Ganesh Reddy Karri is working as an Associate

Professor Senior Grade-2 in School of Computer

Science and Engineering in VIT-AP University. He
is a Passionate researcher and his research interests

include Cloud Computing, Network Security, Fog

Computing and Edge Computing. Towards his
Profile he is having 15 Publications indexed in

Scopus and SCI indexing. He is a certified trainer

for Security Analyst profile by NAASCOM. He is

currently guiding 6 Full time Ph.D. Scholars in VIT-

AP university. He is a member of IEEE.

SACHI NANDAN MOHANTY (Senior Member,

IEEE) received a Ph.D. degree from IIT Kharagpur,
India, in 2015, with MHRD scholarship from the

Government of India. He is a Post-Doctoral from IIT

Kanpur in 2019. He has authored/edited 32 books,
published by IEEE-Wiley, Springer, Wiley, CRC

Press, NOVA, and DeGruyter. His research interests

include data mining, big data analysis, cognitive
science, fuzzy decision-making, brain-computer

interface, cognition, and computational intelligence.

He has received four Best Paper Awards during his Ph.D. at IIT Kharagpur,
International Conference at Benjing, China, and the others at International

Conference on Soft Computing Applications organized by IIT Rookee in

2013. He has awarded the Best Thesis award first prize by the Computer
Society of India in 2015. He has guided nine Ph.D. Scholar. He has

published 120 International Journals of International repute and he has been

elected as a Fellow of the Institute of Engineers, European Alliance
Innovation (EAI) Springer. He is a senior member of the Computer Society

Hyderabad chapter. He is also the reviewer of the Journal of Robotics and

Autonomous Systems (Elsevier), Computational and structural
Biotechnology Journal (Elsevier), Artificial Intelligence Review (Springer),

and Spatial Information Research (Springer).

SHAHID ALI, PhD degree from Peking

university, in signal and information processing

with the School of Electronics, Peking University,
MS degree in Aerospace Engineering from Beijing

Institute of Technology, Beijing, China, and the BS

degree in Communication Engineering from
University of Engineering and Technology

Peshawar, KPK, Pakistan, in 2015. His research

interests include channel estimation, MIMO, OFDM, and channel capacity
in wireless communications.

MUHAMMAD IJAZ KHAN, received his Master,
Mpill and PhD degree from Quaid-eAzam

University Islamabad in 2014, 2016 and 2019

respectively. Worked as academic researcher in
Quaid-i-Azam University. The author has

contributed to research in topics: Nusselt number

and Nanoflid. The author has an hindex of 36, co-
authored 87 publications receiving 4704 citations.

Sherzod Abdullaev, Prof at Engineering School,

Central Asian University, Tashkent, Uzbekistan, I
am doing scientific work on methods of obtaining

biofuel by processing household waste. I like to

study mathematics and physics in depth. I enjoy

reading art books and articles published in scientific

journals in my spare time.

SALMAN A. ALQAHTANI, Salman A. AL Qahtani

current research interests are in the area of 5G
networks, broadband wireless communications, radio

resource management for 4G and beyond networks

(call admission control, packet scheduling and radio
resource sharing techniques), cognitive and

cooperative wireless networking, small cell and

heterogeneous networks, self-organizing networks,
smart grid, intelligent IoT solutions for smart cities,

dynamic spectrum access, coexistence issues on

heterogeneous networks in 5G, industry 4.0 issues, Internet of Everything

and mobile cloud computing. In addition, his interests also include

performance evaluation and analysis of high-speed packet switched

networks, system model and simulations and integration of heterogeneous
wireless networks. Mainly his focus is on the design and optimization of 5G

MAC layers, closed-form mathematical performance analysis, energy-

efficiency, and resource allocation and sharing strategies. He has authored
two scientific books and authored/co-authored around 76 journal and

conference papers in the topic of his research interests since 2004

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355092

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

